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Abstract

We present several classification results and calculation of categories of
representations for von Neumann algebras and quantum groups. The work is
structured according to its previous publication as preprints or journal articles
and grouped as two blocks, the first one dealing with quantum groups, the
second one with II; factors. We recommend the reader who is not familiar with
the subject of this work, to consult directly Chapter 1.

In the first article, the fusion rules of the category of corepresentations of several
free quantum groups are calculated and we prove a theorem relating fusion
rules of a free complexification of an orthogonal quantum group with the fusion
rules of the original quantum group. The next article (joint work with Moritz
Weber) contains classification results for easy quantum groups. We classify a
large subclass of easy quantum groups in terms of reflection groups. This allows
us to prove that easy quantum groups form a rich and complex object of study.
The work also exhibits a fairly large class of non-classical quantum isometry
groups.

In the first article on von Neumann algebras (joint work with Niels Meesschaert
and Stefaan Vaes), we give a new proof for stable orbit equivalence of arbitrary
Bernoulli actions of finite rank free groups - a result earlier shown by Bowen.
Moreover, we can extend Bowen’s work and prove orbit equivalence with some
quotients of Bernoulli actions. This implies stable isomorphism of the associated
group measure space II; factors. The second article on von Neumann algebras
(joint work with Sébastien Falguiéres) contains our work on bimodule categories
of II; factors. We prove that for a tensor C*-category from a fairly large class,
including finite tensor C*-categories, there is a II; factor whose category of finite
index bimodules is equivalent to this category. We also include consequences for
the calculation of other invariants of II; factors. The last article contains partial
classification results for free Bogoliubov crossed products by the integers. These
include isomorphism as well as non-isomorphism results. We also conjecture
a characterisation of strong solidity for free Bogoliubov crossed products and
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support it with our results.

Our work is complemented by an introduction to the history of the subject and
a list of open problems illustrating the common direction of our research.



Beknopte samenvatting

Deze thesis bevat verschillende resultaten over de classificatie en de berekening
van representatiecategorieén van von Neumannalgebra’s en kwantumgroepen.
De hoofdstukken komen overeen met eerder gepubliceerde preprints en artikels.
Deze zijn in twee delen gegroepeerd. Het eerste bevat resultaten over
kwantumgroepen, terwijl het tweede over von Neumannalgebra’s gaat.

In het eerste artikel berekenen we de fusieregels van corepresentatiecategorieén
van enkele vrije kwantumgroepen. Bovendien tonen we een verband aan
tussen de fusieregels van een orthogonale kwantumgroep en van zijn vrije
complexificatie. Het volgende artikel (met medeauteur Moritz Weber) bevat
resultaten over de classificatie van een grote deelklasse van easy kwantumgroepen
aan de hand van reflectiegroepen. We leiden hieruit af dat easy kwantumgroepen
een rijk en complex onderwerp vormen. Bovendien vinden we een redelijk grote
klasse van niet klassieke kwantumisometriegroepen.

In het eerste artikel over von Neumannalgebra’s (met medeauteurs Niels
Meesschaert en Stefaan Vaes) geven we een nieuw bewijs voor het feit dat
vrije groepen van eindige rang vele paarsgewijs stabiel orbietequivalente
acties hebben. Hun Bernoulli-acties en zekere quotiénten ervan zijn allemaal
stabiel orbietequivalent. Bowen toonde al vroeger aan dat Bernoulli-acties
van vrije groepen van eindige rang paarsgewijs stabiel orbietequivalent zijn.
Stabiele orbietequivalentie van acties impliceert dat de bijhorende group
measure space-constructies stabiel isomorf zijn. Het tweede artikel over von
Neumannalgebra’s (met medeauteur Sébastien Falguiéres) bevat ons werk
over bimodulecategorieén. We tonen aan dat vele tensor-C*-categoriéen als
bimodulecategorie van een II;-factor voorkomen. Onder andere realiseren we
alle eindige tensor-C*-categoriéen, wat gevolgen heeft voor andere invarianten
van Il -factoren. Het laatste artikel bevat een gedeeltelijke classificatie
van gekruiste producten met vrije Bogoliubov-acties van de gehele getallen.
We bewijzen isomorfisme- en niet-isomorfismeresultaten voor dergelijke von
Neumannalgebra’s. Verder formuleren we een conjectuur die strong solidity van
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deze von Neumann algebras zou karakteriseren, welke we met enkele van onze
resultaten ondersteunen.

Onze onderzoeksresultaten worden verder aangevuld met een historische
inleiding van de materie en een lijst van open problemen die de richting van
ons onderzoek verduidelijken.
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Chapter 1

Historical introduction and
description of the main
results

In this chapter, we give an introduction to our work during the last 4 years.
We have two aims in this chapter. Firstly, we want to put our research into
a historical context, explaining the development of the subjects it is related
to. Secondly, we explain our results and the work it is based on and the
motivation to do research on these topics. We give a historical introduction to
the topics of von Neumann algebras in Section 1.1, (quantum) symmetries of
spaces in Section 1.2, and unitary representation theory in Section 1.3. The
last Section 1.4 describes our main results and indicated the common direction
of our the research. We give in particular a link between our work on von
Neumann algebras, measured equivalence relations and quantum groups. More
on potential links between the topics we treat in this thesis can be found in
Chapter 7. It is possible to directly jump to Section 1.4, skipping all historical
context.

1.1 Von Neumann algebras

Von Neumann algebras were introduced by Murray and von Neumann in a series
of papers starting in 1936 [139, 140, 228, 141]. As a motivation to introduce
them, they name problems in operator theory, the theory of unitary group
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representations and quantum mechanics. A von Neumann algebra is a strongly
closed, unital *-subalgebra of the algebra Z(H) of bounded linear operators
on a (complex) Hilbert space H. Von Neumann algebras have an algebraic
characterisation as those unital *-subalgebras of (H) that are equal to their
bicommutant. If S denotes a subset of Z(H), then &’ = {T € B(H)|ST =
TS for all S € S} is its commutant. The bicommutant of S is S”. Von Neumann
algebras can be characterised in the more algebraic context of C*-algebras.
A C*-algebra A is an normed *-algebra with isometric involution such that
[xz*|| = ||z|? for all x € A. Sakai and Dixmier proved that a C*-algebra has
a faithful representation as a von Neumann algebra if and only if it is a dual
Banach space [65, 187]. If M is a von Neumann algebra, we denote by M, its
predual. The weak-* topology on a von Neumann algebra is called the o-weak
topology and it plays an important role. The fact that von Neumann algebras
possess analytic and and algebraic characterisations is a strong indication that
they form an interesting and relevant class of objects.

By means of a direct integral decomposition, generalising direct sums, Murray
and von Neumann could reduce the study of general von Neumann algebras to
those which are simple, called factors. A factor M is characterised by the fact
that that it has a trivial centre C1 = Z(M) = M' n M.

Before we proceed, let us make the following common assumption.

Assumption. All von Neumann algebras considered in this work are supposed
to act on a separable Hilbert space.

1.1.1 Types classification of factors

There is a classification of factors in three different types and several subtypes.
Let us explain this classification. A projection in a von Neumann algebra M
is a self-adjoint idempotent p = p* = p? € M. Thanks to the so called Borel
functional calculus, every von Neumann algebras contains an abundance of
projection. More precisely, the linear span of all projections in a von Neumann
algebra forms a norm-dense set. One important point in the theory of von
Neumann algebras is hence the investigation of projections and their relations
to each other. Two projections p,q € M are equivalent if there is an element
v € M such that vvo* = p and v*v = ¢q. If p,q € M are projections, we say
that p is bigger than ¢ if p — q is still a projection. In this case we write p = q.
A projection p € M is called minimal if all projections q € M, p > ¢ satisfy
q € {0,p}. A projection p € M is called finite if no projection p > ¢ is equivalent
to p. Note that a minimal projection is finite. A von Neumann algebra is called
finite, if all its projections are finite. Assume that M is a factor.
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e M is of type I if it contains a minimal projection.
e M is of type II if it contains no minimal projection, but a finite projection.

e M is of type IIT if all of its non-zero projections are infinite.

If M is of type I then there is a unique n € N U {00} and minimal projections
(pi)osi<n in M such that > ;. p; = 1, where the sum denotes the strong
limit of its finite partial sums. Given this cardinality, we say that M is of type
I,. If M is of type II, it either contains an infinite projection or not. In the
former case, M is of type Il,, in the latter it is of type II;.

There is an alternative characterisation of the different types of a von Neumann
algebra, that we are going to explain now. A state on a von Neumann algebra
is positive linear function ¢ : M — C with norm 1. More precisely, a state ¢
must satisfy ¢(z*x) = 0 for all x € M and ¢(1) = 1. Weight theory generalises
the notion of states on von Neumann algebras [66, 207, 202, 47]. A weight on
a von Neumann algebra M is a positively homogeneous and additive function
w: My — [0,4+0], where M, = {x*x |2z € M} denotes the cone of all positive
elements in M. The weight ¢ is

e faithful, if p(z*z) = 0 implies x = 0;

« semifinite, if the set my, = {x € M | p(z*x) < 400} of all ¢-2-integrable
elements is o-weakly dense in M;

e normal, if for any family of pairwise orthogonal projections (p;); the
equality ¢(3, pi) = >, ¢(pi) holds, where Y, p; is to be understood as a
strongly converging sum;

o tracial, if p(uzu*) = ¢(x) for all x € M, and all unitaries u € U(M).
We abbreviate a normal semifinite faithful weight as an nsff weight. Note that a

state ¢ on M is equivalently described as a weight whose 2-integrable elements
are all of M and which satisfies ¢(1) = 1. Let M be a factor.

e M is of type I, if and only if there is a tracial nsff weight ¢ on M such
that ¢(M,) < [0, +o0] is a discrete set with exactly n + 1 elements.

e M is of type II; if and only if it there is a normal tracial state ¢ on M
such that p(My) is continuous.

e M is of type 11, if and only if there is a tracial nsff weight ¢ on M such
that (M) is continuous and contains +o0.
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e M is of type III if there is no tracial nsff weight on M.

For simplicity we refer to a tracial state as a trace. Finiteness of von Neumann
algebras can be characterised by the existence of traces. A von Neumann algebra
is finite if and only if it admits a faithful normal and tracial state. Usually we
denote a trace by 7 and if we want to fix a certain trace on a von Neumann
algebra, we speak about a tracial von Neumann algebra.

1.1.2 Construction of von Neumann algebras

If M and N are von Neumann algebras represented on Hilbert space H and K,
respectively, then we can form their tensor product M®@AN acting on H @ K.
For all operators T € M, S € N the tensor product T® S = (T®1)(1®S) is a
bounded operator on H ® K. We define

M®N ={T®S|TeMSeN}.

Another important construction for von Neumann algebras is the group von
Neumann algebra. Let G be a discrete group and denote by £(G) the Hilbert
space with a preferred orthonormal basis (d4)ge. The group von Neumann
algebra L(G) = A(G)” of G is the smallest von Neumann algebra containing
the image of the left regular representation A : G — U(#(Q)). 1t is a factor if
and only if G is an icc group, that is every non-trivial conjugacy class of G is
infinite.

The crossed product von Neumann algebra of a discrete group acting on a von
Neumann algebra always contains a copy of the group von Neumann algebra.
Let M c %(H) be a von Neumann algebra and G a discrete group acting on M
via *-isomorphisms (these will be automatically continuous). Then M can be
represented on the Hilbert space tensor product #(G) ® H =~ #(G, H) via the
map 7 defined by (7(2)£)(g9) = (¢9-x)&(g). Then (M) and 1 ® L(G) generate a
von Neumann algebra inside Z(£(G) ® H), which is denoted by M x G. This
is the crossed product of M by the action of G.

A standard Borel space is the Borel space associated with some complete metric
space. A standard Borel space X together with a Borel probability measure x4 on
X is called a standard probability measure space. In case G acts on a standard
probability measure space (X, u) in a non-singular way, that is it preserves the
measure class of p1, then G acts on L”(X) via the almost everywhere well defined
formula g- f(z) = f(g~'-2), forall g € G, f € L*(X). We often do not mention
the measure p explicitly and write G —~ X. The crossed product L (X) x G is
called the group measure space construction of G —~ X. A non-singular action
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G —~ X is called free, if the set of fixed points of every element in G is negligible.
The action is ergodic, if every globally G-invariant measurable subset of X is
either negligible or co-negligible. Murray and von Neumann showed that a
group measure space construction of a free and ergodic non-singular action is a
factor.

1.1.3 Existence of different types of factors and reduction to
type II; factors

Murray and von Neumann were able to show that all type I, factors are
isomorphic with #(H), where H is separable of dimension n. Using their
group measure space construction, they also gave examples of type 11y, IL,.
and IIT factors. The type of L*(X) x G for a free ergodic non-singular action
G —~ (X, ) on a diffuse standard probability measure space is given by the
following criterion.

o I”(X) x G is a type II; factor if G —~ X preserves some probability
measure in the measure class of u.

o I*(X) % G is a type I, factor if G — X preserves an infinite measure
in the measure class of u.

e IP(X) x G is a type III factor if G —~ X admits no invariant measure
equivalent to p.

This enabled Murray and von Neumann to give examples of all types of von
Neumann algebras.

Later, building on the modular theory of Tomita-Takesaki [207, 206, 202], the
work of Connes on type III factors [49] showed, that they are build up out of
type II factors in a sense which can be made precise. Since every I, factor can
be written as a tensor product of a type II; factor with Z(£(N)), the study of
von Neumann algebras can be theoretically reduced to the study of type II;
factors.

1.1.4 Isomorphism and non-isomorphism results for von Neu-
mann algebras

It is notoriously difficult to prove isomorphism or non-isomorphism results for
von Neumann algebras. The only two non-isomorphic II; factors that Murray
and von Neumann were able to find, are the group von Neumann algebras
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L(S..) of the group of finite permutations of an infinite countable set and the
group von Neumann algebra L(F2) of the free group of rank two. In order to
distinguish them they used the concept of property I'. A II; factor M with
trace T has property I if there is a sequence of unitary elements (uy,), in M
such that 7(u,) = 0 for all n € N and [u,,z] — 0 strongly for all z € M.
Such a sequence is called a non-trivial central sequence. It was shown that
L(S5) has property I', while L(F3) does not. Ounly 30 years later, in 1969,
McDuff published a proof of the fact that there are uncountably many pairwise
non-isomorphic IT; factors [136], see also [188] for a similar result of Sakai. Note
that in 1967, Powers already showed that there are uncountably many pairwise
non-isomorphic factors of type III [179].

Isomorphism and non-isomorphism of von Neumann algebras can be studied in a
systematic way. A surprising isomorphism between von Neumann algebras is an
isomorphism that it is not coming from any classical source. An instance of such
surprising isomorphisms is the uniqueness of the amenable II; factor explained
in Section 1.1.5. Proving such isomorphism results for von Neumann algebras
follows the general strategy that flexibility of a measure theoretic setting can
be used to overcome difficult algebraic problems. This thought goes hand in
hand with structural and rigidity results for von Neumann algebras, allowing to
recover information about classical structures from the von Neumann algebraic
setting. Classification results in terms of classical data are an instance of such
type of results, of which the most striking one is W*-superrigidity as explained
in Section 1.1.6. As we will explain there, it is naturally linked to the notions
strong solidity and uniqueness of Cartan subalgebras, two notions which became
focal points of research in II; factor theory during the last decade.

1.1.5 Surprising isomorphism results for von Neumann alge-
bras

Isomorphism results make use of the extraordinary flexibility of von Neumann
algebras. Since they are of a measure theoretic nature, cut and paste arguments
with projections can give rise to unexpected isomorphism between von Neumann
algebras. The first such isomorphism result is the uniqueness of the hyperfinite
II; factor R shown by Murray and von Neumann. A von Neumann algebra
M is hyperfinite, if there is an ascending sequence of finite dimensional von
Neumann subalgebras (A, ), inside M such that M is the strong closure of
U,, An. It follows, for example, that all group von Neumann algebras of locally
finite icc groups are isomorphic with R, which is unexpected from an algebraic
point of view.

In the 70’s Connes showed that hyperfiniteness is equivalent to injectivity of a von
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Neumann algebra [52]. This was a major advance in the study of von Neumann
algebras. In particular, his work has consequences for the study of group von
Neumann algebras and group measure space constructions. A group I' is called
amenable, if there is a I'-invariant state on £*(T"). Since the group von Neumann
algebra of a discrete group is injective if and only if the group is amenable,
Connes’s work implies that a group von Neumann algebra of a discrete group is
hyperfinite if and only if the group is amenable. Also the group measure space
construction associated with a probability measure preserving (pmp) action
is hyperfinite if and only if the acting group is amenable. In particular, all
group von Neumann algebras of icc amenable groups are isomorphic to R and
so are all group measure space constructions associated with free ergodic pmp
actions of amenable groups. In what follows, we will use the terms amenable
von Neumann algebra and injective von Neumann algebra interchangeably.

Another source of unexpected isomorphism results for von Neumann algebras
is free probability theory. Given a non-zero projection in a free group factor,
p € L(F,), Ridulescu [181] and Dykema [73] proved independently that the
isomorphism class of the compression pL(F,,)p does only depend on the number
t =1+ (n—1)/7(p)%. The resulting von Neumann algebra is denoted by L([F;)
and we call it an interpolated free group factor. Let us mention the famous
free group factor isomorphism problem, asking whether L(F,,) is isomorphic
to L(F,,) for n # m. By the work of Dykema and Rédulescu it follows
that either all free group factors are pairwise non-isomorphic or all pairwise
isomorphic. Dykema developed techniques based on random matrices to show
that many free products and free amalgamated products of von Neumann
algebras are isomorphic to interpolated free group factors. See for example
[71, 76]. Alongside, the work of Shlyakhtenko on von Neumann algebras
generated by operator-valued semicircular elements [224, 200, 194] forms another
source of unexpected isomorphisms with free group factors.

Exploiting the isomorphism results explained before, we show in Chapter 5 that
certain crossed products of free group factors by an action of the integers are
also isomorphic with an interpolated free group factor. We give a more detailed
introduction to our results in Section 1.4.

In Chapter 3, we give a new proof for another type of unexpected isomorphism
results. Many actions of finite rank free groups are isomorphic to Bernoulli
actions and the latter give rise to stably isomorphic group measure space
constructions. These results where proved before by Bowen, using different
methods [40, 41].
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1.1.6 Structural theory and non-isomorphism results for von
Neumann algebras

Invariants of II; factors

It is very difficult to distinguish two von Neumann algebras. This became already
apparent in the work of Murray and von Neumann and is further supported by
the unexpected isomorphism results described in Section 1.1.5. On the other
hand, at least conjecturally, a lot of von Neumann algebras constructed from
classical data should completely remember this initial data. Let us for the
moment only mention Connes’ conjecture, which claims that the group von
Neumann algebras of two icc property (T) groups can only be isomorphic if the
groups are isomorphic. Recall in this context, that a group G has property (T),
if every unitary representation m of G that contains a sequence of unit vectors
(&n)n such that ||7(g)&, — &n| — 0 for all g € G already contains an invariant
unit vector.

One possible approach to distinguishing von Neumann algebras are invariants.
Murray and von Neumann introduced the fundamental group F(M) of a II;
factor M. It is defined by

F(M) = {r(p)/7(q) | p,q € M projections and pMp = ¢Mq} c R¢.
Alternatively, we have
I(M) = {te [R>0|M = Mt} C |R>U,

where M is the amplification of M by ¢ defined as p(M,,(C) ® M)p for some
n e Nand pe M,(C)®M with (Tr®)(p) = ¢. Note that the isomorphism class
of this factor does not depend on the concrete choice of n and p. Murray and
von Neumann could prove that F(R) = Rq, using the fact that the hyperfinite
II; factor is unique. Using this fact, it also follows that every II; factor M
satisfying M®R =~ M has full fundamental group. Such factors are called
McDuff factors in honour of her work on a characterisation of McDulff factors by
means of central sequences [137], which we are going to explain in Section 1.1.6.

Only in the 70’s Connes proved that there are II; factors which have a
fundamental group not equal to R~. Namely, he showed that every II; factor
with property (T) has a countable fundamental group. His results did not give
a concrete calculation of any fundamental group.

Only the advent of Popa’s deformation/rigidity theory [165, 164, 166, 167]
made the first calculation of a fundamental group not equal to R~ possible
[164]. His work is the basis of the majority of modern structural results,
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calculations of invariants and non-isomorphism results for von Neumann
algebras. Let us explain the basic idea of deformation/rigidity theory. A
deformation of a von Neumann algebra is a sequence of completely positive
maps, which converges to the identity pointwise o-weakly. There are many
different sources of deformations, most notably property (H) [165] and Popa’s
malleable deformations [166, 167]. A deformation of a von Neumann algebra is
opposed to some rigidity property of its subalgebras forcing the deformation
to converge uniformly on the unit ball of such a subalgebra. The choice of a
structurally relevant deformation and the identification of rigid parts of a von
Neumann algebra, often allow one to identify the position of the latter in the
sense of Popa’s intertwining by bimodules introduced in [166]. If A, B ¢ M
are von Neumann subalgebras of a tracial von Neumann algebra, we say that
A embeds into B inside M, if there is a *-homomorphism ¢ : A — pB"p, a
non-zero partial isometry v € My, (C) ® M such that vg(x) = zv for all z € A.
We write A <j); B in this case.

Popa’s techniques were used in [166] to give examples of IT; factors with arbitrary
countable fundamental group. Later, in [176, 178], his methods were further
developed, so that Popa and Vaes were able to give examples of II; factors with
prescribed fundamental group from a big class of subgroups of R..¢ containing
groups of arbitrary Hausdorff dimension. However, there is no conjectural result
on all possible fundamental groups of I1; factors.

The outer automorphism group of M is defined as Out(M) = Aut(M)/Inn(M).
It was a long standing open question of Connes, whether there are II; factors
that have only inner automorphisms. This question was settled by loana,
Peterson and Popa in [117], where they prove that actually every abelian second
countable compact group can arise as the outer automorphism group of a II;
factor. Their results are based on deformation/rigidity techniques applied to
amalgamated free products. The relevant deformation for amalgamated free
products is the length deformation. It can be roughly described as deforming
a word the stronger the more alternating letters from the two factors of the
product it has. The results of Ioana, Peterson and Popa were generalised by
Vaes, and Falguieres and Vaes in two directions. On the one hand, Falguieres
and Vaes proved in [86] that any, not necessarily abelian, second countable
compact group can arise as the outer automorphism group of a II; factor. On
the other hand, the methods of Ioana, Peterson and Popa were developed so as
to control bimodule categories of II; factors. It is characteristic of the method
employed by Ioana, Peterson and Popa, that the resulting II; factors are not
explicit. Only the existence of a factor with a prescribed outer automorphism
group is proven making use of a Baire category argument. Likewise, all results
based on their methods are non-explicit.

Given two von Neumann algebras N and M, an M-N-bimodule p,/Hy is a
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Hilbert space H with a normal *-homomorphism 7 : M — Z(H) and a
normal *-antihomomorphism p : N — %(H) such that 7w(z)p(y) = p(y)n(z)
for all z € M and y € N. Assume that M is equipped with a tracial
state 7. It is known that every left M-module ,,;H is isomorphic to
(A(N) ® I?(M,7))p for some projection p € ZB(F(N))®M. The dimension
of p/H is defined as (Tr®r7)(p), where Tr denotes the non-normalised trace
on Z(£(N)). Similarly, the dimension of a right M-module is defined. If M
and N are tracial von Neumann algebras, an M-N-bimodule j;Hy has finite
Jones index if dim _n(H) < +o0 and dimy; (H) < +o0. Its Jones index is
defined and Index(H) = dimy;_(H)dim _n(#H). The class of all finite index
M-M-bimodules together with M-M-bimodular, bounded maps as morphisms
forms a category Bimod(M) with the follow properties.

e Bimod(M) is an abelian category.

e The Hom-spaces in Bimod (M) are Banach spaces when equipped with
the operator norm.

e The adjoint of a linear operator defines a contavariant functor = :
Bimod(M) — Bimod(M), which fixes all objects and satisfies |T*T| =
|T||? for all morphisms 7T

These properties are summarised by saying that Bimod(M) is a C*-category.
There is also a monoidal structure on Bimod(M) given by the Connes tensor
product ®py. Its unit is the trivial bimodule [?(M). This monoidal structure
enjoys the following properties.

e The functor ®;; : Bimod(M) x Bimod(M) — Bimod(M) is bi-linear.

e The associator and the unit isomorphism of ®,; are unitary with respect
to the functor =.

We say that Bimod(M) is a tensor C*-category. There is one last piece of
structure on Bimod(M) that we want to mention.

e For every object H € Bimod(M) the conjugate bimodule H with left and
right M-action x{y = y*{x* defines a conjugate for H. That is, there are
morphisms R : I?(M) > H®p H and R : 12(M) - H @y H satisfying

1B 1 @0 H @ur H B N — idy

and

HC @y HouH "8 H = idy;.
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All the properties above, make Bimod(M) a compact tensor C*-category. The
relevance of Bimod(M) stems from the fact that it encodes several other
invariants of a von Neumann algebra and moreover is an interesting invariant
in its own. The fundamental group and the outer automorphism group of
a IT; factor M are encoded in the bimodule category Bimod(M) as follows.
The Jones index of a bimodule can be recovered from the compact tensor
C*-category structure of Bimod(M). For example, if j;Hys is an irreducible
bimodule and R, R are its conjugate morphisms, then R* o R is a element of
Hom(L*(M),I?(M)) = C and Index(H) - idiz(pry = R* o R. An irreducible
bimodule p;H,; is called invertible if Index(#) = 1 and the isomorphism classes
of invertible elements in Bimod(M) form a group with respect to ®;. We
denote this group by Grp(M). The link between the fundamental group and
the outer automorphism group of the II; factor M is described by the following
short exact sequence

1— Out(M) - Grp(M) - F(M) - 1,

where the morphism Grp(M) — F(M) is given by the right M-dimension. Note
also that Grp(M) = Out(M™) . Another invariant, which is reflected in the
bimodule category is the lattice of irreducible subfactors of M (Propositon
4.4.8). A systematic theory of subfactors was initiated by Jones in [125]. The
study of subfactors can be considered as an implementation of Klein’s Erlangen
programme for factors. Indeed, every homomorphism between factors is injective
and hence the study of subfactors is the same as studying homomorphisms
between factors. We say that a subfactor N < M is irreducible, if N' n M = C1.
In some cases, the short exact sequence above allows one to recover Jones
invariant [125]

C(M) = {A e R.q| there is an irreducible subfactor N ¢ M with index A},

if one can calculate the category of bimodules of a II; factor. We will do this in
Chapter 4. See also Section 1.4.3 for another calculation of C(M).

Vaes showed in [216] that there is a II; factor M for which Bimod(M) contains
only multiples of the trivial bimodule. It follows that every subfactor N ¢ M
is isomorphic to N ¢ M,,(C) ® N for some n € N. This result was followed
up by work of Falguiéres and Vaes [87], showing that the category of finite
dimensional unitary representations of any compact second countable group
can be realised as the bimodule category of a II; factor. Note that by the
work of Doplicher and Roberts, these categories are exactly the symmetric
compact tensor C*-categories [67]. In our work with Falguiéres presented in
Chapter 4, we show that many other compact tensor C*-categories can arise
as the bimodule category of a II; factor. The class we consider contains all
finite tensor C*-categories, that is compact tensor C*-categories with finitely
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many isomorphism classes of irreducible objects, as well as the categories of
finite dimensional unitary corepresentations of many discrete quantum groups,
including all discrete groups. The fact that corepresentations of discrete quantum
groups play a role in the study of bimodule categories of II; factors, is not
surprising and will be explained in Section 1.2.

Falguieres, Vaes and ourselves are only able to prove the existence of II; factors
with prescribed invariants, relying on the approach and the methods of Ioana,
Peterson and Popa. Based on Popa’s deformation/rigidity results for crossed
product von Neumann algebras, Vaes could, however, find explicit examples of
I1; factors for which he calculated the fusion rules of their bimodule category
[215]. In particular, he could show that every countable group is the outer
automorphism group of an explicitly described II; factor. Later Deprez and Vaes
[64] were able to describe the complete bimodule category of explicit IT; factors.
They also obtained calculations of C(M), for certain II; factors M, proving in
particular that C(M) can be any set of natural numbers that is closed under
taking divisors and least common multiplies. In contrast to these results, our
results with Falguiéres in Chapter 4 give an example of C(M) being completely
calculated and containing irrational numbers. For completeness, let us also
mention that Deprez continued his work on explicit examples of II; factors,
finding concrete calculations of fundamental groups and outer automorphism
groups [62] as well as endomorphism semigroups [63].

Structural results for II; factors

The study of property I' by Murray and von Neumann as well as the results
of McDuff on McDuff factors [137] can be considered the starting point of
a structural theory of II; factors. In the latter work, it is proven that a II;
factor M tensorially absorbs the hyperfinite II; factor, if and only if it has
non-hypercentral central sequences, or expressed in a more modern language,
if and only if the asymptotic centraliser M’ n M* is not abelian. Here, w
denotes a non-principle ultrafilter and M“ is the tracial ultrapower of M. This
result was a important ingredient of Connes’s proof of the uniqueness of the
hyperfinite II; factor [52] several years later. Connes showed in particular, that
the group von Neumann algebra L(F2) can be embedded into any ultrapower
of the hyperfinite II; factor. This lead him to ask whether every II; factor
is embeddable into an ultrapower of R, a question which became known as
Connes’s embedding problem and which currently attracts strong interest due to
its links with several other fields of mathematics [154]. Note that the uniqueness
of the ultrapower of R is equivalent to the continuum hypothesis by [88]. The
work of Connes [50] also showed that a IT; factor does not have property T if
and only if it is full. A von Neumann algebra M is called full, if the group of
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its inner automorphisms is closed in the group of all automorphisms equipped
with the pointwise convergence in norm on the predual M, of M. The study
of ultrapower algebras of II; factors remains important until the present day
[114, 172]. See also [3] for a recent work about ultrapower algebras of type III
von Neumann algebras including a survey on developments in this area.

In IT; factor theory, there are several constructions of new von Neuamnn algebras
out of other ones or out of classical data. Among these, we already mentioned the
group von Neumann algebras, the group measure space construction and tensor
products of von Neumann algebras in Section 1.1. Since all these constructions
have direct implications for the structure of their output von Neumann algebras,
it is natural to ask, whether a II; factor arises this way. More generally, one
asks if any amplification of a given II; factor can arise by means of the above
constructions. The first result in this direction was the proof of existence
of a factor which is not anti-isomorphic to itself by Connes in [51]. Such a
factor cannot be the amplification of any group von Neumann algebra, since
the map G 3 g — ¢! induces an anti-isomorphism of L(G) with itself. The
first examples of II; factors that cannot be written as tensor products nor as
a group measure space construction were the free group factors. A II; factor
is called prime, if it cannot be written as a tensor product of two other type
II; factors. Ge proved in [100] that the free group factors are prime. In earlier
work, Voiculescu already showed that the free group factors do not contain
any Cartan subalgebra [225]. A Cartan subalgebra A of a II; factor M is a
maximally abelian subalgebra such that the group of normalising unitaries
Mu(A) = {ueU(M)|uAu* = A} generates M as a von Neumann algebra. If
L*(X) x G is a group measure space construction, then L*(X) c L*(X) x G
is a Cartan subalgebra. A Cartan subalgebra arising this way is called group
measure space Cartan. Since every amplification of a group measure space
construction contains a Cartan algebra, interpolated free group factors L([F})
cannot be obtained as a group measure space construction.

In the context of Popa’s deformation/rigidity theory, both primeness and absence
of Cartan algebras found a more systematic treatment via the notions of solidity
and strong solidity, respectively. A finite von Neumann algebra M is called solid,
if the relative commutant A’ N M of any diffuse von Neumann subalgebra A ¢ M
is amenable. We call M strongly solid, if the normaliser Nj;(A)” of any diffuse
amenable von Neumann subalgebra A < M is amenable. Note that strong
solidity implies solidity. Indeed, if M is strongly solid and A ¢ M is diffuse,
then A contains a diffuse, amenable subalgebra B. Since A’ n M < Ny (B)”, it
follows that M is solid. The notion of solidity was introduced by Ozawa in [153],
while strong solidity was introduced by Ozawa and Popa in [155]. It is easy to
see that every non-amenable finite von Neumann algebra that is solid, must be
prime. Even more is true. Any non-amenable von Neumann subalgebra of a
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solid von Neumann algebra is prime. This clarifies the structural importance of
this notion. Similarly, no non-amenable von Neumann subalgebra of a strongly
solid von Neumann algebra contains a Cartan algebra. While the original proof
of Ozawa for solidity of the free group factors [153] used C*-algebraic techniques,
Popa could put this result into the framework of his deformation/rigidity theory
[170], which paved the way for the work of Ozawa and Popa on strong solidity of
the free group factors [155]. Ozawa and Popa also show that any group measure
space construction M = L*(X) x [F,, of a free ergodic profinite action of a
free group with finite rank has the following property. Every diffuse amenable
subalgebra A © M either has an amenable normaliser or it embeds into L (X)
in the sense of Popa’s intertwining by bimodules. The results of Ozawa and
Popa were extended further to hyperbolic groups [46] by Chifan and Sinclair.
This development culminated in the work of Popa and Vaes [173, 174] showing
that any trace preserving action of a hyperbolic group I on a von Neumann
algebra B gives rise to a crossed product M = B x I satisfying the following
dichotomy. Whenever A c M is a diffuse subalgebra that is amenable relative
to B [160, 2, 155], then either the normaliser of A is amenable relative to B or
A embeds into B inside M. Note that this is a structural result of the strongest
known kind, which holds for arbitrary crossed products by a trace preserving
action. In particular, the result of Ozawa and Popa is extended to arbitrary
free ergodic pmp actions of free groups of finite rank. In the proof of Popa and
Vaes, deformation/rigidity techniques are combined with Ozawa’s idea from
[153] to exploit special boundary actions of hyperbolic groups. But C*-algebraic
techniques are avoided. Let us mention that the results of Ozawa and Popa and
Popa and Vaes have major consequences for the study of the relation between
group actions and their associated group measure space constructions. We will
explain the relevant term W*-superrigidity in Section 1.1.6.

Another interesting class of II; factors for which structural results could be
obtained are so called free Bogoliubov crossed products. Shlyakhtenko’s
free Krieger algebras link them to finite corners of continuous cores of
free Araki-Woods factors. Voiculescu introduced the free Gaussian functor
[223], which associates with a real Hilbert space Hr a free group factor
I'(Hr)" = L(Faimpgg)- Denote by H the complexification of Hg and by
F(H)=CQo®D, >, H®" the full Fock space of H. Then every vector £ € Hg
defines a creation operator {(§) on F(H) defined by

()Q=¢ and 1(HE® - ®E =(ERHR - RE,.

Voiculescu showed that the operator s(§) = (I(§) + 1(£)*)/2 has a semicircular
distribution with variance |¢]|?. Furthermore, if (&;); is an orthogonal family
of non-zero vectors in Hg, then (s(&;)); is free in the sense of free probability
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theory [226]. It follows that
I'(Hg)" = {s(§) | € Hr}" = L(Faim 1) -

Voiculescu’s construction was the starting point of two different developments.
On the one hand Shlyakhtenko introduced in [192] free Araki-Woods factors
and on the other hand orthogonal representations were used to construct free
Bogoliubov crossed products. Let us first explain free Araki-Woods factors.
Given a one-parameter group (Uy)wer of orthogonal transformations of a real
Hilbert space Hg, we can modify the scalar product on the complexification H¢
of Hg in the following way. Extend U, by linearity to He. Then, by Stone’s
theorem, there is an unbounded selfadjoint and positive operator A on H¢ such
that U; = exp(iAt) for all t € R. Shlakhtenko showed that

&Emu = <1+ex2p(—A)§’”> :

is a well defined inner product on H¢. Denoting the completion of He with
respect to (-, )y by H, we can again consider the full Fock space F(H) and
the left creation operators I(£), & € Hgr. Wrting s(§) = (I(§) + 1(£)*)/2,
the von Neumann algebra I'(Hg, (U;))” = {s(§)|£ € Hg} is called the free
Araki-Woods factor associated with (Hg, (U;)). Shlyakhtenko proved that
free Araki-Woods factors are indeed factors and that they are of type III
for all non-trivial one-parameter groups (U;). A one-parameter group (Uy)
is called almost periodic if the operator exp(A) defined above has pure point
spectrum. Shylakhtenko classified free Araki-Woods factors associated with
almost periodic one-parameter groups, showing that they are distinguished
exactly by the subgroup of R generated by the eigenvalues of exp(A4). However,
the classification of other Araki-Woods factors proved to be difficult [195],
although Houdayer [108] and Houdayer and Ricard [111] could obtain structural
results for all free Araki-Woods factors and their continuous cores using Popa’s
deformation rigidity techniques.

Voiculescu’s free Gaussian functor is functorial for isometries between real
Hilbert spaces. Consequently, every representation 7 : G — O(HR) of a discrete
group by orthogonal transformations on a real Hilbert space, gives rise to an
action of T' on the free group factor I'(Hg)”, which is called a free Bogoliubov
action. The crossed product I'(Hg)” x G is denoted by I'(Hg, G, )" and we
call it a free Bogoliubov crossed product. Since free Bogoliubov actions form a
large class of actions on free group factors, it is natural to study them. Since
the word length deformation on free group factors [165] is very strong, also here
Popa’s deformation/rigidity theory can be used to obtain structural results, as
done by Houdayer and Shlyaktenko and Houdayer [112, 106, 105].

As described in [112], the point of contact between free Bogoliubov crossed
products and free Araki-Woods factors are Shlyakhtenko’s free Krieger algebras
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[194]. Free Krieger algebras are von Neumann algebras generated by an
operator-valued semi-circular distributed element with values in a commutative
von Neumann algebra. Operator valued free probability was developed by
Voiculescu and Speicher in [224] and [200]. If A < M is an inclusion of von
Neumann algebras with conditional expectation E: M — A, andn: A —> Aisa
completely positive map, then an element X € M is called A-valued semicircular
with distribution n, if E(X) = 0, E(XaX) = n(a) for all a € A and all higher
A-valued moments E(Xa1Xa2X --- Xa,X) of X can be described in terms of 7
by means of Speichers operator-valued free cumulant formalism. The free Krieger
algebra generated by an A-valued semicircular element with distribution 7 is
denoted by ®(A,n). Shlyakhtenko proved in [193] that the continuous cores of
free Araki-Woods factors can be represented by free Krieger factors ®(L*(R), n).
At the same time, it is observed in [112], that free Bogoliubov crossed products
associated with orthogonal representations of the integers are free Krieger factors
®(L*(SY),n). This explains the interest in the special case of free Bogoliubov
crossed products by the integers. In Chapter 5, we obtain isomorphism and
non-isomorphism results as well as structural results for these free Bogoliubov
crossed products, the aim being to give a characterisation of strong solidity for
and a classification of I'(Hg, Z, )" in terms of properties of 7.

1.2 (Quantum) Symmetries of measure spaces

All abelian von Neumann algebras are of the form L™*(X) for a standard
measure space X. This motivates the idea to consider the theory of von
Neumann algebras as non-commutative measure theory. Also, von Neumann
algebras are the natural framework for non-commutative integration theory
[206, 207, 202, 47, 48], supporting this point of view. If G —~ X is an ergodic
action of a discrete group on a standard measure space, then the quotient
space X /G behaves pathologically. In order to circumvent this problem, one
considers the group measure space construction of the action instead. One can
also consider the measurable equivalence relation R(G —~ X) on X described
by  ~ ¢g- . As Singer showed in [196], R(G —~ X) is an intermediate object
between G —~ X and L”(X) x G in the following precise sense. Two actions
G ~ X and H ~ Y admit an isomorphism between L*(X) x G and L*(Y') x H
sending the Cartan algebra L*(X) onto L*(Y), if and only if the equivalence
relations R(G —~ X) and R(H —~ Y') are isomorphic. The theory of measurable
equivalence relations became an active field of research after the discovery of
Singer starting with the work of Dye on orbit equivalence of free ergodic pmp
action of the integers [69, 70]. See [94, 97| for recent surveys of the topic. As
mentioned in Section 1.1.5 Connes proved that any free ergodic pmp action of
an infinite amenable gorup gives rise to the hyperfinite II; factor as its group
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von measure space construction. Connes, Feldman and Weiss strengthened
this result and proved that such an action already gives rise to the ergodic
hyperfinite 11 equivalence relation [55] - an extension of a result by Ornstein
and Weiss [151]. When studying the dependence of I*(X) x G on the action
G —~ X, it is hence natural to split the problem into two parts. There are three
natural types of equivalence for free ergodic actions. Two free ergodic pmp
actions G ~ X and H —~ Y are

e conjugate, if there are isomorphisms § : G - H and A : X — Y such
that for all g € G and almost every x € X, we have A(g-x) = d(g) - A(z);

o orbit equivalent, if their orbit equivalence relations are isomorphic;

o W"-equivalent, if their group measure space constructions are isomorphic.

In the context of Popa’s deformation/rigidity theory, W*-superrigid actions
became a much-studied topic. A free ergodic pmp action G —~ X is called
W*-superrigid if any other free ergodic pmp action that is W*-equivalent to
G —~ X is already conjugate to it. By the result of Singer, this problem naturally
splits into an orbit equivalence rigidity result combined with a uniqueness of
group measure space Cartan algebra result. While orbit equivalence superrigidity
results were known since [93], only in [177], Popa and Vaes were able to find
the first W*-superrigid group actions. Many other W*-superrigidity results
followed [110, 116, 38]. However, as explained in Section 1.1.5, there are not
many isomorphism results for von Neumann algebras, including the group
measure space constructions. Proving orbit equivalence of two free ergodic pmp
actions is one way to establish new isomorphism results for II; factors. In [40]
Bowen proved that all Bernoulli shifts of a fixed free group with finite rank
are pairwise orbit equivalent, showing in particular that the associated group
measure space constructions are isomorphic. For different ranks of the free
groups, two free ergodic actions of free groups can never be orbit equivalent, as
it is shown by Gaboriau’s work on I?-Betti numbers and cost of equivalence
relations [95, 96]. However, in [41] Bowen shows that all Bernoulli shifts of all
finitely generated free groups are pairwise stably orbit equivalent. This shows
also that the associated group measure space constructions are pairwise stably
isomorphic. Note that by [173], two stably W*-equivalent actions of finitely
generated free groups are stably orbit equivalent. In Section 3, we give an
elementary proof of Bowen’s results. Moreover, we show that many quotients
of Bernoulli shifts of free products of amenable groups are conjugate to plain
Bernoulli shifts.

Passing from usual to quantum symmetries of spaces, one naturally considers
quantum group actions. A compact quantum group in the sense of Woronowicz
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[233, 236] is a C*-algebra A equipped with a *-homomorphism A: A - A® A
such that (A®id)o A = (d® A)o A and A® A = span A(A)(A® 1) =
span A(A)(1 ® A). Compact quantum groups in the operator algebraic setting
are an established notion for two reasons. Firstly, a natural development of their
basic theory, including a construction of a Haar state, is possible. Secondly, a
characterisation of Woronowicz’s compact quantum groups in terms of concrete
compact tensor C*-categories by means of a Tannaka-Krein type duality [234]
gives a point of view independent of operator algebras. Kustermans and Vaes
defined locally compact groups in [131]. Although they have to assume the
existence of Haar weights, their definition allows for a deep and naturally
developed theory [212, 213, 5, 60, 126]. In particular, many inclusions of von
Neumann algebras can be described by crossed products with locally compact
quantum groups [79] or more generally with measured quantum groupoids
[147, 80, 77, 78]. This shows that Vaes-Kustermans locally compact quantum
groups are a correct notion within the framework of operator algebras. In
Chapter 4, we prove that the category of unitary corepresentations of a discrete
quantum group A acting strictly outerly [213] on a II; factor M can be retrieved
by means of bimodules in the inclusion M x A ¢ M x A % A. This result
is most probably folklore - see [121] for related results. The correspondence
between categories of corepresentations and bimodule categories is interesting
in connection with the study of invariants of von Neumann algebras.

As explained in the last paragraph, actions of quantum groups can be used to
obtain information about von Neumann algebras or to construct them. Vice
versa, quantum group actions can be used to find new examples of quantum
groups via the construction of quantum isometry groups. After work of Banica
[11, 10] and Bichon [34] on quantum isometry groups of finite structures, in
[102], Goswami introduced quantum isometry groups in the context of Connes’s
spectral triples [53, 54]. His definition was later generalised in [20]. Despite
several computations of quantum isometry groups [33, 32, 20], it remained a
difficult task to obtain calculations of non-classical quantum isometry groups.
In Chapter 6, we show in particular that many new quantum groups can be
obtained as quantum isometry groups of certain maximal group C*-algebras.

1.3 Unitary representation theory of quantum groups
and tensor categories

It is an old idea to study mathematical objects through their categories of
representations. As already mentioned, a compact quantum group in the sense
of Woronowicz is even completely determined by its concrete tensor C*-category



UNITARY REPRESENTATION THEORY OF QUANTUM GROUPS AND TENSOR CATEGORIES ____ 19

of finite dimensional unitary corepresentations. In the classical setting, Doplicher
and Roberts were able to characterise the abstract compact C*-categories that
arise as categories of finite dimensional unitary representations of a compact
group. They are exactly the symmetric compact tensor C*-categories [67].
Note, however, that the symmetric structure of a compact tensor C*-category,
if it exists, does not need to be unique - even if the the tensor category is
finite [82, 59, 120]. Using the fact that all unitary representations of a finite
compact quantum group have integer dimensions, one can show that there are
tensor C*-categories not arising as the category of unitary representations of a
compact quantum group. The question of which compact tensor C*-categories
can be obtained as categories of finite dimensional unitary corepresentations of
a compact quantum group is an active field of research [159].

In [24] Banica and Speicher approached to relation between compact quantum
groups and tensor C*-categories from the categorical point of view. Making
use of Speicher’s formalism of crossing and non-crossing partitions [145],
which proved successful in free probability theory, they define concrete tensor
C*-categories and consider the compact quantum groups associated with them
by Woronowicz’s Tannaka-Krein theorem. They call the quantum groups
that they obtain easy quantum groups, although combinatorial quantum
groups would probably be a more suitable term. Easy quantum groups are in
particular quantum subgroups of Wang’s universal free quantum groups A, (n),
hence their C*-algebra A is generated by elements of an orthogonal matrix
u = (u;;) = (uj;) € My(A). The class of easy quantum groups is interesting
for two reasons. Firstly, the successful application of combinatorial arguments
involving partitions in free probability theory by the work of Speicher gave
rise to connections between free probability theory and easy quantum groups
[15, 129, 18, 19]. Secondly, easy quantum groups are a priory of a completely
different nature than all other known classes of compact quantum groups, which
potentially yields new phenomena in the study of their representation theory
and the associated operator algebras. Easy quantum groups were divided by
two properties. An easy quantum group is called half-liberated if its generating
elements satisfy w;; Uk Unm = Unmukiti;. All half-liberated easy quantum groups
where classified in [232]. An easy quantum group is called hyperoctahedral if
its generating elements u;; are partial isometries. All non-hyperoctahedral easy
quantum groups were classified in [17, 232]. In Chapter 6, we introduced the
notion of simplifiable easy quantum groups. A hyperoctahedral easy quantum
group is simplifiable if the squares of its generating entries ufj are central. We
showed that the class of simplifiable easy quantum groups is not amenable to
classification, by giving a concrete bijection between the lattice of simplifiable
easy quantum groups and lattice of reflection groups. This shows on the one
hand that the class of easy quantum groups is much richer than previously
expected [17] and on the other hand it gives a concrete perspective to approach
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problems about the representation theory of easy quantum groups for example
via word counting arguments in groups.

Many results on the structure of a compact quantum group are based on the
knowledge of its fusion rules, that is the fusion rules of its category of finite
unitary dimensional corepresentations [8, 18, 15, 42, 91, 119]. While the fusion
rules for g-deformations of classical compact Lie groups [122, 68, 186] are the
same as for their classical counterparts, in other cases it is not clear how to
calculate them. Banica gave a calculation of the fusion rules of Wang’s and
van Daele’s free orthogonal and free unitary quantum groups [230, 219] in
[7, 8]. His proof was of a combinatorial kind and could be adapted to other
classes of quantum groups in [9, 25, 26, 13]. Denote by As(n) Wang’s quantum
permutation group [231]. Then a quantum group A is called free according
o [13],if Ay(n) > A — As(n) and the category of finite dimensional unitary
corepresentations of A has a combinatorial description similar to that one of
easy quantum groups. In Chapter 2, we used Banica’s free complexification of
an orthogonal quantum group [12] and some elementary isomorphism results in
order to obtain more calculations of fusion rules in the class of free quantum
groups.

1.4 Description of our main results

1.4.1 Isomorphisms and fusion rules of orthogonal free quan-
tum groups and their free complexifications

This section describes our work in Chapter 2. Let us briefly recall some facts
mentioned in Sections 1.3 and 1.2. In [230], Wang defined the free unitary and
the free orthogonal quantum groups. The free unitary quantum group is defined
as the universal C*-algebra
Au(n) = C*(uiy,1 <i4,j <nlu = (uy) and 7 = (uj;) are unitary),
while the free orthogonal quantum group is given by
Ao(n) = C*(uij,1 <i,j < n|u=7 is unitary) .

Both are matrix quantum groups in the sense of Woronowicz [233, 235], meaning
that there is a *-homomorphism A : A, (n) = Ay (n) ®min Ax(n) which satisfies
A(uiz) = X1 cpen Wik ® up; and that u, ¥ are invertible. Later, in [231], Wang
defined the quantum permutation group

Ag(n) = C*(u;j,1 < i,j < n|u =7 unitary and all u;; are projections) .
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Let us define a last quantum group, the hyperoctahedral quantum group. It is
given by

As(n) = C*(uiy,1 < i,j < n|u =7 unitary and all u;; are partial isometries) .

The categories of finite dimensional unitary representation UCorep(+) of these
quantum groups can be described combinatorially by means of Speicher’s
partitions [145]. One says that the intertwiner spaces of A, (n) are “spanned
by partitions”. This was taken as a definition in [13]: a compact matrix
quantum group (CMQG) (A,u) with u of size n x n is called free, if the
canonical homomorphism A, (n) — Ag(n) factors through (A, v) and UCorep(A)
is spanned by partitions. A CMQG is called orthogonal free if it is free and it
is a quotient of A,(n). It was shown in [24, 232], that there are exactly seven
orthogonal free quantum groups.

Isomorphism classes of finite dimensional unitary corepresentations of a compact
quantum group A form a based semi-ring with basis given by isomorphism
classes of irreducible elements. This semi-ring is called the Grothendieck ring
of UCorep(A) or fusion ring of A. Fusion rules play an important role when
proving properties of quantum groups as described in Section 1.3. Banica
calculated the fusion rules of A,, A, and Ag in [7, 8, 9]. Later Banica and
Vergnioux calculated the fusion rules of other free quantum groups, among
them the hyperoctahedral quantum group, in [25]. They could find a common
framework to explain the fusion rules of all examples known until then, which
they called free fusion rings. A free fusion ring roughly is a semi-ring R whose
basis is given by words with letters in some semigroup S such that the product
of elements in R can be expressed in terms of the multiplication in S. Based on
the work of Banica and Vergnioux, we clarify the definition of free fusion rings
in Chapter 2. We say that a quantum group has free fusion rules, if its fusion
ring is free. Banica and Vergnioux asked, whether all free quantum groups have
free fusion rules. This motivated the calculation of the fusion rules of further
examples of free quantum groups. In Chapter 2, we find a description of two of
the remaining orthogonal free quantum groups in terms of the free orthogonal
quantum groups and deduce that their fusion rules are not free. Note that the
seventh orthogonal free quantum group was not known at the time of our work
on Chapter 2, but Weber later found a description of the remaining one in the
same spirit as our work does [232].

In contrast to orthogonal free quantum groups, a complete classification of all
free quantum groups is out of sight. However, Banica gave a free complexification
construction in [12], which makes it possible to construct a canonical unitary
quantum group out of an orthogonal quantum group. If the initial quantum
group was free, so will be its free complexification. In particular, as expected,
the free complexification of the free orthogonal quantum group is the free
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unitary quantum group. We proved in Chapter 2, that if (A4, ) is an orthogonal
quantum group with free fusion rules satisfying 1 ¢ u®2*+! for all k € N, then
also the fusion rules of its free complexification are free. This gives a new
example of a quantum group with free fusion rules. Note that the requirement
1 ¢ u®?**1 is necessary.

Proposition 1.4.1. Let (A, u) be an orthogonal compact matriz quantum group
for which there is k € N such that 1 € u®*+1. Denote by (A, ) the free
complexification of A. Then A contains a group-like unitary of order two. In
particular, the fusion rules ofg are not free.

Proof. Take k € N as in the statement of the proposition. Denote by
z € C*(Z/2Z) the non-trivial group-like unitary. Recall from [12] or Chapter 2
that the fundamental corepresentation @ of A equals u - z in the universal free
product A + C*(Z/2Z). Using Frobenius duality, the assumption 1 € u®2k+1
implies, u € (W@ u)®*. So 1 € u®u implies z € (U ®U)®* ®u. This shows that
z is in the C*-algebra IZ, which is generated by the entries of 4. O

1.4.2 A connection between easy quantum groups, varieties
of groups and reflection groups

We describe joint work with Moritz Weber presented in Chapter 6. Recall the
definition of free quantum groups as described in Section 1.4.1. A compact matrix
quantum group (A, w) is free if there is a *-homomorphism A, (n) - A — Ag(s)
that maps fundamental corepresentations onto fundamental corepresentations
and such that there is a combinatorial description of the category of finite
dimensional unitary corepresentations UCorep(A) of A. Banica and Speicher
realised in [24] that not the fact that a free quantum group contains Ag(s)
is decisive, but that the combinatorial description of their corepresentation
categories plays the crucial role when considering free quantum groups.
They defined easy quantum groups as quotients of A,(n) such that there
is a combinatorial description of UCorep(A) in the following precise sense.
A partition is an arrangement of k upper and [ lower points and lines connecting
them. Formally, a partition in this sense is a partition into subsets of
{1,---Jk} u{l,---,l}. A partition p can be represented by a diagram in
the following way:

k upper points and
[ lower points.
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Two examples of such partitions are the following diagrams.

sl

In the first example, all four points are connected, and the partition consists only
of one block. In the second example, the left upper point and the right lower
point are connected, whereas neither of the two remaining points is connected
to any other point. Denote by P(k, 1) the set of all partitions on k upper and on
[ lower points. Given a partition p € P(k,[) and two multi-indices (i1, ..., ),
(j1,---,71), we can label the diagram of p with these numbers, both the upper
and the lower row labelled from left to right, and we put

5, (i, ) 1 if p connects only equal indices,
Z’ = . . . . . .
p\%J 0 if there is a string of p connecting unequal indices.
For every n € N, there is a map T}, : (C™)®* — (C™)® associated with p, which
is given by

Tp(en ® - ®@ei) = Y Gpi.)) e, ® ey,

151, ji<n

A compact matrix quantum group subgroup (A,u) of A,(n) is called easy
[24, 17], if there is a set of partitions C given by D(k,l) c P(k,l), for all k,l € N
such that

Hom (u®*, u®") = span{T, |p € D(k,1)}.

We say in this case that the intertwiner spaces of (A, ) are spanned by partitions.
Banica and Speicher actually describe purely combinatorially the possible sets
of partitions C that arise in the definition of easy quantum groups (see Chapter
6). A set of partitions is called category of partitions if it describes the category
of finite dimensional unitary corepresentations of some easy quantum group.

Let us briefly mention that an easy quantum group is free in the previous sense,
if and only if its category of partitions contains only non-crossing partitions
in the sense of Speicher [145]. The classification of orthogonal free quantum
groups mentioned in Section 1.4.1 could be extended to particular classes of
easy quantum groups. Let rrm be the partition on 4 lower points that are
all connected. We call an easy quantum group hyperoctahedral if its category
of partitions contains rrm. It was shown in [17, 232] that an easy quantum
group is either hyperoctahedral or it belongs to an explicitly known family
of 14 other easy quantum groups. Let X be the partition on 3 upper and 3
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lower points that connects the first point in each row, with the last point of the
other row and connects the two middle points as well. An easy quantum group
whose category of partitions contains X is called half-liberated. In [232], it was
shown that every half-liberated hyperoctahedral quantum group is contained
in a countable family of easy quantum groups defined by Banica, Curran and
Speicher in [17]. This family is called the hyperoctahedral series. So it remained
to describe non-half-liberated hyperoctahedral easy quantum groups.

In [17], also another countable family of hyperoctahedral quantum groups was
defined, which is called the higher hyperoctahedral series. The partition W/
consisting of a block with four elements and a block with two elements was the
common partition that is contained in all categories of partitions of elements
of the higher hyperoctahedral series. We say that an easy quantum group is
simplifiable, if it its category of partitions contains W/~. Any simplifiable easy
quantum group is hyperoctahedral. In Chapter 6, we give a complete description
of all simplifiable easy quantum groups, show that there are uncountably many
and exploit our description in order to obtain structural results on the lattice of
simplifiable easy quantum groups. We describe the main result of this chapter
in what follows.

Recall that a reflection group is a countable discrete group G together with a
(possibly countably infinite) family of generators (g;); of order two. Equivalently,
one can consider normal subgroups of the infinite free product Z5* of the group
of order two. Denote by Sy the endomorphism subsemigroup of End(Z3%)
generated by all inner automorphisms and the following endomorphisms called
identification of letters. For all n € N and all choices of i1, ...,7, and ji,...,jn
of indices, the map

grr g ) Gin 7 @Gy fork=1,...,n
2 2 ¢ e g )
a; — a; ifi¢ {i1,... in}.

lies in Sp. We call a reflection group G symmetric if its associated normal
subgroup H < Z3* is Sp-invariant, that is ¢(H) < H for all ¢ € Sp.

Theorem (See Section 6.6.1). There is a commuting diagram of lattice
isomorphisms and anti-isomorphisms
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simplifiable ~ simplifiable
categories of easy quantum
partitions groups
symmetric
reflection
groups

in which all maps are explicitly described.

The explicit maps between the different lattices in the last theorem can be
found in Chapter 6. We want to point out that the correspondence between
simplifiable categories of partitions and simplifiable easy quantum groups can be
made more explicit than in the general framework of Banica and Speicher [24]
using Woronowicz’s Tannaka-Krein theorem [234]. Indeed the relation between
the two is rather involved, making use of the tensor C*-category associated
with a category of partitions. That is why we want to highlight the following
rephrasing of Proposition 6.5.5. If p is a partition with k£ blocks and a1, ..., ax
are elements of an C*-algebra A, we denote by p(a,...,ax) the element of A
that is obtained by labelling the blocks of p with aq,...,a; clockwise starting
from the top left corner and multiplying the resulting word afterwards.

Proposition (See Proposition 6.5.5). The map between simplifiable categories
of partitions and simplifiable easy quantum groups can explicitly described. If C
is a simplifiable category of partitions, then

Ac(n) = C* (uij, 1<4,7 < n|u=m1 unitary, u?j central and
play,...,ax) = a2 - ai for all
choices a, € {u;; | 4,5 =1,...,n}, 1 <r <k,
and all partitions p € C ) .

is the associated simplifiable easy quantum group. If (A, u) is a simplifiable easy
quantum group, then its associated category of partitions is

Ca = {p partition with k blocks|k € N and p(ay,...,ar) = p(ai,...,az)

for all choices ar € {u;j | 4,5 =1,...,n},1 <r < k}.
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Applying our main theorem, we obtain the following result on the complexity
of easy quantum groups.

Theorem (See Theorem 6.B). There is an injection of lattices of varieties
of groups into the lattice of easy quantum groups. In particular, there are
uncountably many easy quantum groups that are pairwise non-isomorphic.

This result has two interpretations. On the one hand, it shows that the class of
easy quantum groups is very rich. On the other hand, it says that easy quantum
groups are too complex to study them all at the same time. This implies that
the strategy for research on easy quantum groups has to focus on particularly
interesting and accessible subclasses.

In Section 1.2, we explained that quantum isometry groups are non-classical
replacements of isometry groups in the context of operator algebras. Banica
and Skalski [22, 21] considered for the first time quantum isometry groups
C*-algebras. We give a description of the maps between easy quantum groups
and symmetric reflection groups in our main theorem in terms of such quantum
isometry group constructions. Denote by C (Hy[f]) the maximal simplifiable easy
quantum group - its category of partitions is generated by the element L. Let
E < 7% be the subgroup of all words of even length and for H < Z4™ write
(H)p =25

Theorem (See Theorems 6.C). If H < E < Z5* is a proper Sp-invariant
subgroup of E, then the mazimal quantum subgroup of C(H,[[L]) acting faithfully
by isometries on C*(Z3"/(H),) is a simplifiable easy quantum group.

Vice versa, the diagonal subgroup of any simplifiable easy quantum group is of
the form Z3"/(H), for some proper So-invariant subgroup H < E. Moreover,
these two operations are inverse to each other.

In particular, the last theorem gives a fairly large class of new examples of
non-classical quantum isometry groups.

1.4.3 Tensor C*-categories arising as bimodule categories of
II, factors

This section explains our joint work with Sébastien Falguieres presented in
Chapter 4. In Section 1.1.6, we explained the history of invariants for II; factors.
Recall that a compact tensor C*-category is called finite if it has a finite number
of isomorphism classes of irreducible objects. Let us right away state two of the
consequences of our work presented in Chapter 4.
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Theorem (See Theorem 4.A). For every finite tensor C*-category C, there is
a 11 factor M such that Bimod(M) ~ C as tensor C*-categories.

Theorem (See Corollary 4.4.4). For every second countable compact group G
there is a 11y factor M such that Out(M) =~ G and every finite index bimodule
of M is of the form ol (M)ar for some a € Aut(M).

The first theorem complements the work of Vaes and Falguieres on bimodule
categories of II; factors [87], where it was shown that every symmetric compact
tensor C*-category is the bimodule category of a II; factor. The second result
generalises the work of Falguieres and Vaes on outer automorphism groups
of II; factors [86], saying that every second countable compact group is the
outer automorphism of a II; factor. In particular, it gives the first example of a
completely calculated, uncountable bimodule category of a II; factor.

We show how to calculate Jones invariant
C(M) = {)\ | there is a finite index irreducible inclusion N < M of index A}

for IT; factors with finite bimodule category. We calculate C(M) in a special case
where it contains irrational numbers. More concretely, we prove the following
theorem.

Theorem (See Theorem 4.B). There exists a 11} factor M such that

5+ 13
C(M) = {1, % 12 + 3313, 4 + /13,

11 +3+v/13 13 +3+/13 19+ 54/13 7—1—\/13}
2 ’ 2 ’ 2 ’ 2 ’

All theorems in Chapter 4 are derived from a main result, which we are going to
explain in what follows. An inclusion of tracial von Neumann algebras N < M is
called quasi-regular if the N-N bimodule yI?(M)y is a direct sum of finite index
N-N-bimodules. Note that this is equivalent to the common definition given in
Chapter 4 by Section 1.4.2 in [164]. Recall that the basic construction of N ¢ M
is the semifinite von Neumann algebra (M, ey) acting on I?(M), where ey :
[?2(M) — I?(N) c I2(M) is the orthogonal projection. The inclusion N ¢ M
has depth 2, if yI?(M;)y; is isomorphic to a subbimodule of NIZ(M)®%,,.
Denote by Bimod(M < M;) the tensor C*-category in Bimod(M) that is
generated by p/I?(M;)y. If N © M has depth 2, every irreducible bimodule in
Bimod(M < M) is isomorphic to a subbimodule of 3,12( M)y

Theorem (See Theorem 4.D). let N c Q be a quasi-reqular and depth 2
inclusion of Iy factors. Assume that N and N’ ~ Q are hyperfinite and denote
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by N € @Q < @Q; the basic construction. Then, there exist uncountably many
pairwise non-stably isomorphic 11y factors (M;) such that for all i we have
Bimod(M;) ~ Bimod(Q < Q1) as tensor C*-categories.

The proof of this result heavily relies on the deformation/rigidity results of Toana,
Petersen and Popa [117]. As we explained in the introduction, the method of
Toana, Peterson and Popa is intrinsically non-constructive, as it relies on a Baire
category argument. So we only show the existence of II; factors with prescribed
bimodule category in the above theorem and don’t give a concrete example.
To finish this introduction, let us give a consequence of our main theorem
that we did not mention in this generality yet. For a locally compact group
G denote by UReps, (G) the compact tensor C*-category of finite dimensional
unitary representations of G. If A is a Kac algebra, we denote similarly by
UCorepg, (A) the category of finite dimensional unitary corepresentations of
A. In [198], the notion of maximally almost periodic discrete Kac algebras was
introduced. Roughly speaking, a Kac algebra A is maximally almost periodic,
if matrix coefficients of its finite dimensional unitary corepresentations span A
o-weak densely.

Theorem (See Theorem 4.C). Let C denote one of the following compact
tensor C*-categories. Either C = URepgn(G) for a countable discrete group, or
C = UCorepg, (A) for an amenable or a mazimally almost periodic discrete Kac
algebra A. Then, there is a 11y factor M such that Bimod(M) ~ C.

This theorem gives a concrete motivation to study discrete Kac algebras and
their representation theory. Our work on free and on easy quantum groups in
the Chapters 2 and 6 is very much related to this. Let us explicitly mention the
question of whether the dual of the free orthogonal quantum group is maximally
almost periodic, which is described in Section 7.2.2.

1.4.4 Stable orbit equivalence of Bernoulli actions of free
groups and isomorphism of some of their factor actions

This Section describes our joint work with Niels Meesschaert and Stefaan
Vaes, which we present in Chapter 3. If I' is a countable infinite discrete
group and (X, o) is some standard probability measure space, the Bernoulli
action of I' with base space (X, 10) is the natural shift action on the product
space (X§, MO®F). Extending earlier work of Ornstein on Bernoulli actions of
Z [149, 150], Ornstein and Weiss proved that entropy is a complete invariant
for isomorphism of Bernoulli actions of any discrete amenable group [152].
Moreover, they could show that certain factor actions of Bernoulli actions
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are isomorphic with a Bernoulli shift. This is interesting, since due to the
characterisation by entropy, Bernoulli shifts are comparably well understood.
As it was proved by Connes, Feldman and Weiss in [55], all free ergodic pmp
actions of amenable groups are pairwise orbit equivalent, which makes them
also indistinguishable on the level of their group measure space constructions.

In [39], Bowen introduced a generalisation of entropy for actions of amenable
groups and he showed that Bernoulli actions of a free group with different base
space entropy cannot be isomorphic. This made the question of whether such
Bernoulli actions can be orbit equivalent particularly interesting. In [40], Bowen
showed that indeed all non-trivial Bernoulli shifts of a fixed finite rank free
group are pairwise orbit equivalent. In [41], he showed that Bernoulli shifts
of free groups with different rank are stably orbit equivalent. Note that such
actions cannot be orbit equivalent due to the work of Gaboriau on I2-Betti
numbers and cost of measured equivalence relations [95, 96]. The proofs of
Bowen were graph theoretical in nature. We gave new proofs of Bowen’s results
using elementary algebraic methods only relying on the universal property
of the free groups and an abstract characterisation of Bernoulli shifts and of
co-induced actions. This gives the following theorem.

Theorem (Bowen [41, 40]. See Theorem 3.A). For fixed n and varying
non-trivial base probability space (Xo, o) the Bernoulli actions F, — Xg"
are orbit equivalent.

If also n wvaries, the Bernoulli actions F,, —~ X(;F” and F,, — Yo[Fm are stably
orbit equivalent with compression constant (n — 1)/(m — 1).

The abstract characterisation of Bernoulli shifts and co-induced actions actually
allows us to identify factor actions of finite free products of infinite amenable
groups I' = Ay # -+ A,, ~ K'/K for any compact second countable group K
as Bernoulli shifts.

Theorem (See Theorem 3.B). IfI' = Ay --- = A, is the free product of n
infinite amenable groups and if K is a non-trivial second countable compact group
equipped with its normalized Haar measure, then the factor action I —~ KT /K
of the Bernoulli action T —~ KU by the diagonal translation action of K is
isomorphic with a Bernoulli action of I'. In particular, keeping n fixed and
varying the A; and K, all the actions T —~ K /K are orbit equivalent.

In the particular case where I' = [, the action I — K /K is isomorphic with
the Bernoulli action T' ~ (K x --- x K)' whose base space is an n-fold direct
product of copies of K.

This extends results of Ornstein and Weiss [152]. It was speculated before
whether the actions I' ~ K''/K for fixed non-amenable I' and for K running
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through compact groups, gives rise to explicit examples of pairwise non-orbit
equivalent actions. Out results show that this is not the case.

The above results, from a von Neumann algebraic perspective, give a complete
classification of an interesting and natural class of group measure space
constructions (K /K) x F,, and L*(X}") x F,,, saying that any of these
factors are stably isomorphic with scaling factor (m — 1)/(n — 1) if the free
groups acting have m and n generators, respectively. The classification involves
unexpected isomorphism results for von Neumann algebras, as they were
explained in Section 1.1.5.

1.4.5 On the classification of free Bogoliubov crossed product
von Neumann algebras by the integers

We describe our work presented in Chapter 5. There are different ways
to associate an action G —~ M on a tracial von Neumann algebra with an
orthogonal representation of a discrete group G. Namely, there are Gaussian
actions, Bogoliubov actions and free Bogoliubov actions on the diffuse abelian
von Neumann algebra, the hyperfinite II; factor and on free group factors,
respectively. They have in common that the original representation of G is
closely related to the representation of G on the associated I2-space of the
von Neumann algebras. It is, however, not clear how the crossed product von
Neumann algebra M x G is related to G —~ M. For Gaussian actions, the
focus was put on rigidity results involving only groups that have a certain
rigidity property themselves (that is property (T) groups and non-amenable
products of infinite groups) [38] and for Bogoliubov actions research focused
on entropy results for abelian groups [201, 30, 101]. In contrast, for free
Bogoliubov actions the assumptions on G are of a more general nature and the
questions one asks become different. Let us denote a free Bogoliubov action
associated with an orthogonal representation (H,7) of G by G ~ T'(H)” and
the free Bogoliubov crossed product by I'(H, G, 7)”. On the one hand, Houdayer
and Shlyakhtenko [112] and Houdayer [106] proved strong structural results
about free Bogoliubov crossed product of any countable group, making only
assumptions on the representation they are constructed from. On the other
hand, Houdayer could prove maximal amenability of LG < T'(H)” x G for
any weakly mixing representation of an infinite abelian discrete group G. In
particular, also abelian groups give rise to interesting free Bogoliubov crossed
products, in contrast to the case of Gaussian actions and Bogoliubov actions.
The simplest group is supposedly the group of integers, which motivates to
study it in a deeper way.

The work in Chapter 5 studies free Bogoliubov crossed products with Z and
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aims at a classification and a characterisation of structural properties of these
von Neumann algebras in terms of properties of the representation they are
constructed from. Concerning the classification of free Bogoliubov crossed
products with Z, we can divide our results into three types. Firstly, we obtain
a complete classification of free Bogoliubov crossed products associated with
periodic orthogonal representations of Z. Notably, the classification of such
crossed products is equivalent to the free group factor isomorphism problem.

Theorem (See Theorem 5.A). Let (m,H) be a non-faithful orthogonal
representation of Z of dimension at least 2. Let r = 1 + (dim7w — 1)/[Z : ker 7].
Then

I'(H,Z,7)" =~ L*(]0,1])®LF .,

by an isomorphism carrying the subalgebra LZ of T'(H,Z, )" onto the subalgebra
L7 ([0,1]) ® ClZ¥er ] of 17°(]0, 1])®LF,

The second type of classification result that we obtain are flexibility results,
mainly focusing on almost periodic representations of Z. Let us first note the
following theorem.

Theorem (See Theorem 5.B). The isomorphism class of the free Bogoljubov
crossed product associated with an orthogonal representation w of Z with almost
periodic part T, depends at most on the weakly mizing part of w, the dimension
of Tap and the concrete embedding into S' of the group generated by the
eigenvalues of the complexification of map.

Shlyakhtenko asked during the conference on von Neumann algebras and ergodic
theory in IHP, Paris, 2011, whether two free Bogoliubov crossed products
associated with almost periodic orthogonal representations of the integers are
isomorphic if and only if the concrete subgroup of S generated by the eigenvalues
of the complexifications of the representations they are constructed from are
the same. We could answer this question in the negative.

Theorem (See Theorem 5.D). All faithful two dimensional representations of
Z give rise to isomorphic free Bogoljubov crossed products.

It remains open to find a complete classification of free Bogoliubov crossed
products associated with almost periodic orthogonal representation of the
integers. As we point out, our work allows to single out a conjecture on how a
complete classification should look like.

Conjecture (See Conjecture 5.A). The abstract isomorphism class of the
subgroup gemerated by the eigenvalues of the complexification of an infinite
dimensional, faithful, almost periodic orthogonal representation of 7 is a
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complete invariant for isomorphism of the associated free Bogoljubov crossed
product.

In order to show that unexpected isomorphisms for free Bogoliubov crossed
products exist, we prove the following theorem.

Theorem (See Theorem 5.C). If A denotes the left regular orthogonal
representation of Z and 1 denotes its trivial representation, then

INAZ)eC, 2, @1) =T(#(2),Z,\)" 2T (F(Z2)®C* 2, @2 -1)".

The third type of classification result we obtain are rigidity results for
representations containing a two-dimensional invariant subspace. We are able
to recover spectral information of the involved representations. This leads to a
number of non-isomorphism results for free Bogoliubov crossed products, which
are summarised in the following theorem.

Theorem (See Theorem 5.G). No free Bogoliubov crossed product associated
with a representation in the following classes is isomorphic to a free Bogoliubov
crossed product associated with a representation in the other classes.

o The class of representations A@m, where A is the left reqular representation
of Z and 7 is a faithful almost periodic representation of dimension at
least 2.

o The class of representations A@m, where \ is the left reqular representation
of Z and w is a non-faithful almost periodic representation of dimension
at least 2.

e The class of representations p@ m, where p is a representation of Z whose
spectral measure p and all of its convolutions pu*™ are non-atomic and
singular with respect to the Lebesgue measure on S' and 7 is a faithful
almost periodic representation of dimension at least 2.

o The class of representations p@ m, where p is a representation of Z whose
spectral measure p and all of its convolutions u*™ are non-atomic and
singular with respect to the Lebesgue measure and © is a non-faithful
almost periodic representation of dimension at least 2.

e Faithful almost periodic representations of dimension at least 2.
e Non-faithful almost periodic representations of dimension at least 2.

e The class of representations p @ w, where p is mizing and dim7 < 1.
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We also try to characterise strong rigidity of free Bogoliubov crossed products
in terms of properties of the representation from which they are constructed.
In [112] Houdayer and Shlyakhtenko already proved that any free Bogoliubov
crossed product associated with a mixing representation of any discrete group is
strongly solid. We are able to amend this result in the case of Z-representations
in two directions. Our first result on strong solidity is described in the following
theorem.

Theorem (See Theorem 5.E). Let (m, H) be the direct sum of a mizing
representation and a representation of dimension at most one. Then I'(H,Z, )"
is strongly solid.

If (7, H) is a representation of a discrete group G, we say that a subspace
K < H is rigid for G if there is a sequence g, — o in G, as n — o0, such that
m(gn)|k — idk strongly as n — co. We make the following observation based
on a result by Popa published in [153]. It gives a counterpart to our previous
theorem.

Theorem (See Theorem 5.5.4). Let m be an orthogonal representation of Z
with a rigid subspace of dimension at least two. Then My is not solid.
We conjecture that the previous observation describes the only obstruction to
strong solidity.
Conjecture (See Conjecture 5.B). If (w, H) is an orthogonal representation of
Z, then the following are equivalent.

e I'(H,Z,m)" is solid.

e I'(H,Z,m)" is strongly solid.

e m has no rigid subspace of dimension two.
The results of this work, together with our results presented in Chapter 3, give
(partial) classification results for natural classes of von Neumann algebras that
are constructed from classical data. It would be interesting to find other natural

classes of von Neumann algebras for which one can obtain classification results
involving isomorphism and non-isomorphism results at the same time.
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Chapter 2

Isomorphisms and fusion rules
of orthogonal free quantum
groups and their free
complexifications

This chapter is based on [182]. We show that all orthogonal free quantum
groups are isomorphic to variants of the free orthogonal Wang algebra, the
hyperoctahedral quantum group or the quantum permutation group. We also
obtain a description of their free complexification. In particular we complete
the calculation of fusion rules of all orthogonal free quantum groups and their
free complexifications.

2.1 Introduction

One problem in the theory of compact quantum groups is to find examples
whose invariants can be calculated. The fusion rules of a compact quantum
group are one of these invariants. Fusion rules give a complete description of
equivalence classes of irreducible corepresentations and a decomposition of the
tensor product of two of them into irreducible corepresentations. One approach
to this problem is given by 'free quantum groups’ as defined in [24]. These are
orthogonal quantum groups, i.e. subgroups of the free orthogonal Wang algebra,

35
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whose intertwiners can be described by non-crossing partitions.
Given natural numbers k and [ the set Part(k,[) denotes the set of all partitions
on two rows with &k and [ points, respectively. That is, an element P € Part(k, ()
is a partition of the disjoint union {1,...,k} u {1,...,1}. Alternatively it can be
described by a diagram

Lr

connecting the k& points in the upper row and the [ points in the lower row
according to the partition of {1,...,k}u{l,...,1}. P is called non-crossing if it can
be represented by a diagram with no lines crossing. The set of all non-crossing
partitions on k and [ points is denoted by NC(k,1).

Let n,k,l € N and let (e;) be the standard basis of C*. Let i = (iy,...,4x) €
{1,..,n}* and j = (j1,...,51) € {1,...,n}' be multi indices and P € Part(k,1).
We set P(i,j) = 1 if and only if the diagram P joins only equal numbers after
writing the entries of 4 in the upper row of the above diagram and those of j in
the lower row. If P connects different numbers set P(i,j) = 0.

Using this notation, a partition P € Part(k,l) defines a linear map Tp from
(C™)®* to (C™)®' by

Tp(ei1 ® ®€Z‘k) = Z P(il, ...,ik;jl, ...,jl) . €j1 ® ®ejz'

J1s--5d1

A subspace of Hom((C™)®* (C™)®) is by definition spanned by partitions if it
is linearly generated by a family (T’») where P runs through some subset of
Part(k,1).

In [230] the free unitary Wang algebra

Ay(n) = C*(uij, 1< 1,5 <nl(uij)ij, (u;)i; are unitary)
and the free orthogonal Wang algebra
Ao(n) 1= C*(usj, 1 < 1,5 < nl(uiy)iy; = (uj)i; is unitary)
were introduced. Moreover in [231] the quantum permutation group
(uij) = (uf;) is unitary and u;; are

Ag(n) := C* [ w5, 1 <i,j < n| partial isometries summing up to one
in every row and every column

was defined. Note that “are partial isometries” can be replaced by “are
projections”. The three last named algebras are compact matrix quantum
groups in the sense of Woronowicz [235].

The following class of quantum groups will be of interest in this chapter.
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Definition 2.1.1. Let (A,U) be a compact matrix quantum group. Then it is
called free if

o The morphism (Ay(n),Uy) — (As(n),Us) mapping the entries of U, to
those of Uy factorizes through (A, U).

o The intertwiner spaces Hom(U® (- - U, UM [<]- - - KU, i, jg € {1, }

are spanned by partitions, where U = (ufj) is the conjugate corepresenta-

tion of U and [X] denotes the tensor product of corepresentations.

If the first condition is strengthened by requiring that the morphism
(Ao(n),Us,) — (As(n), Us) factors through (A, U), then A it is called orthogonal
free.

In [24] the following classification was achieved.

Theorem 2.1.2. There are exactly six orthogonal free quantum groups. Namely

1. The free orthogonal Wang algebra.
2. The quantum permutation group.

3. The hyperoctahedral quantum group

*

(uij) = (ufy) is unitary and ) '

Ap(n) = C* (ug;, 1<i,5<n o .
n(n) i TN hIS w;; are partial isometries

4. The bistochastic quantum group
(uij) = (ufy) is unitary and
Ap(n) := C* | wij, 1 <1i,j < n| u;; sum up to one
in every row and every column

5. The symmetrized bistochastic quantum group

(uij) = (uf;) is unitary and
Ap(n) := C* | wij, 1 <4,5 < n| u;j sum up to the same element
in every row and every column

6. The symmetrized quantum permutation group

(uij) = (ufy) is unitary and

ug; are partial isometries
summing up to the same element
in every row and every column

Asv(n) ZZC* ’UJZ‘j, lﬁl,jﬁﬂ
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The fusion rules of (1) were calculated in [7], those of (2) in [9] and those of (3)
in [25]. We show that the remaining examples are slight modifications of A,(n)
and Ag(n). In particular we can derive their fusion rules and find that Ay:(n)
and Ay (n) are counterexamples to a conjecture by Banica and Vergnioux given
in [25].

In [12] the free complexification of orthogonal free quantum groups was
considered. If (A,U) is a orthogonal free quantum group, then its free
complexification (ﬁ, [7) is by definition the sub-C*-algebra of the free product
A # C(S') generated by the entries of U := U - idg = (u;j - idg1). Here
idg1 denotes the canonical generator of C(S'). As Banica shows in [12] the
intertwiners between tensor products of the fundamental corepresentation and
its conjugate can be described by the intertwiners of the orthogonal free quantum
group it comes from. With additional requirements we can calculate the fusion
rules of the free complexification from the fusion rules of the original orthogonal
free quantum group. These additional requirements are fulfilled by A,(n) and

Ay (n), which gives the fusion rules of Ax(n) = /—}E{) Those of A,(n) = Ay(n)
are known from [8].

From [12] we know that m = ’b\(;;) and m = ’?(7—1/) We denote
Ap(n) =: Ac(n) and Ag(n) =: Ap(n). They can be decomposed and described
in terms of A,(n) and Ag(n) again.

2.2 Preliminaries

We will mainly work with compact matrix quantum groups as defined by
Worono-wicz in [235]. If A is a *-algebra and U € M,,(A) we denote by U the
matrix whose entries are conjugated, i.e. U;; = (U;;)*.

A pair (A,U) of a C*-algebra A and a unitary U € M,,(A) is called a compact
matrix quantum group if

e A is generated by the entries of U,
o there is a *-homomorphism A : A - A®min A mapping u;; to >, uir @uy;j,
o the matrix U is invertible.

A morphism of compact matrix quantum groups (A,U) R (B,V) is a

*-homo-morphism A — B such that ¢(u;;) = v;; where U and V must have the
same size. There is at most one morphism from one quantum group to another.
If there is a morphism (A, U) — (B, V) then we say that (B,V) is a quantum
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subgroup of (4,U).
Every compact matrix quantum group is also a compact quantum group, i.e. a
C*-algebra A with a *~homomorphism A : A — A ®uin A such that

e (A®id)oA=(Id®A)0A,
e span(A®1)A(A) =span(l ® A)A(A) = A® A.

A morphism of compact quantum groups (A, A4) 2, (B,Ap) is a unital
*-homomorphism from A to B such that Ago¢ = (¢®¢)oA 4. Every morphism
of compact matrix quantum groups is also a morphism of compact quantum
groups. We will also refer to a quantum group (A,U) or (A,A) as A. If (A, A4)
and (B, Ap) are quantum groups, then we denote by (4, A4) ® (B, Ag) the
direct sum of quantum groups and by (A, A4) = (B, Ap) their free product. We
will also write A® B and A * B. A unitary corepresentation matrix of (A, A)
is a unitary matrix V' € M,,(A) such that A(v;;) = >, vir ® vi;. In particular
a one dimensional corepresentation matrix is just a unitary group-like element
of A.

2.3 Free fusion rings

In this section we will introduce free fusion rings and prove that they are free
unital rings.

We will use the following notation for words in free monoids. Let M = mon(S)
be a free monoid over a set S. If w e M is a word of length k, then we write w;
for the i-th letter of w, 1 < i < k. Hence w = wiwows ... wk_1wy.

Definition 2.3.1. A free fusion monoid is a free monoid M = mon(S) over a
set S with a fusion - : S x S — S v {} and a conjugation ~: S — S. They
must satisfy the following conditions.

1. The fusion - is associative, where we make the convention that s- s’ is the
empty set if one of s, s’ is the empty set.
2. The conjugation is involutive, i.e. 3 = s for all s€ S.

3. Fusion and conjugation are compatible in the following sense. For all
S1, 82,83 € S we have

8182 = 83 & 89+ S3

Il
»

1
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A set S equipped with fusion and conjugation is called a fusion set.
The fusion and conjugation of S induce a fusion and a conjugation on M via

o w-w =wi... wy_1(wk - w))ws ... w]; where this fusion is the empty set
by convention if wy, - w] = &.

o W =Wg...W\

If M = mon(S) is a free fusion monoid, we can turn ZM into an associative
ring by
Oy * Qo = Z (agz + Qg.z)-

wl:aiy

w'=yz
Here w, w’ are words in M, a,, and a, are the corresponding elements in
ZM, xy, yz and xz denote the concatenation of words and the second term in
the sum is by convention always ignored if the fusion x - z is empty. Actually
condition (3) of the previous definition is a necessary condition for making ZM
associative, as it can be seen by considering (as, - @s,) - as, = Qs - (Gs, - Gs,) for
s1, 82,83 € S. A *ring isomorphic to ZM for some fusion monoid M is called a
free fusion ring.
From the point of view of rings, free fusion rings are very easy. Actually they
are free. The proof of the following lemma was already given in [25] in some
special cases.

Lemma 2.3.2. A free fusion ring over a fusion set S is the free unital ring
over as, SES.

Proof. Let ZM be the fusion ring over a fusion set S. It suffices to show that
ZM is a free Z-module with the basis as, - as, with ke N and s;1,...,s5, € S.
So it suffices to express the elements of the Z-basis a,,,w € M as Z-linear
combinations of the elements ag, ---as, with k€ N and sq,...,s; € S and to
show that {as, ---as,|k € N,s1,...,s, € S} is Z-linearly independent.

There are coefficients CY) € Z such that as ---as, = as..5, +
2jw|<k C5)...s,.0w, where |w| is the length of the word w € M. This shows
that {as, ---as, |k € N,si,...,s; € S} is linearly independent. Moreover,
by induction on k there are coefficients D . € Z such that a,, s, =
sy sy + D)<k D5 s G * Gy, - This shows that all a,,w € M are

linear combinations of a,, - --as, with k€ N and s1,...,5,€ 5. O

Remark 2.3.3. Free fusion rings can be used to describe fusion rules very
shortly and there is hope to use free fusion rings as a starting point for proofs of
several properties of quantum groups. See Section 10 of [25] for a comment on
these possibilities. However in order to justify the concept of free fusion rings
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intrinsically it would be good to answer the following question affirmatively. Is
every fusion ring of a compact quantum group that is free as a unital ring a
free fusion ring?

2.4 Some isomorphisms of combinatorial quantum
groups

In this section we will consider combinatorial quantum groups A, (n) for = €
{b,b',s',c,p}. They are free products or direct sums of known quantum groups.
For # € {b',s', ¢, p} it turns out that their fusion rings are not free.

Theorem 2.4.1. We have the following isomorphisms of compact quantum
groups (not mecessarily preserving the fundamental corepresentation).

1. Ap(n) is isomorphic to As(n —1).

2. Ay (n) is isomorphic to the direct sum Aq(n) ® C*(Z/2Z).
3. Ay (n) is isomorphic to the free product Ap(n) «» C*(Z/2Z).
4. Ay(n) is isomorphic to the free product Ay(n) = C(S").

5. Ac(n) is isomorphic to the free product Ay(n) « C(SY).

Remark 2.4.2. Note that in the case n < 3 we have the isomorphisms
Ag(n) = C(Sy) and A (1) = C({—1,1}). So the given descriptions can be
further simplified.

Theorem 2.4.1(1) is proven by the following remark. Let U € M, (A) be an
orthogonal matrix, i.e. U = U unitary, where A is any unital C*-algebra. Then
U is bistochastic if and only if the vector (1,1,...,1)" is a right eigenvector and
(1,1,...,1) is a left eigenvector of U. If T € M,,(C) denotes any orthogonal
matrix such that 7(1,0,...,0)" = (1/\/n,...,1/x/n)" , then an orthogonal
matrix U is bistochastic if and only if 7UT is of block form with 1 in the upper
left corner and an orthogonal (n — 1) x (n — 1) matrix in the lower right corner.
The key observation for the rest of 2.4.1 is the following lemma.

Lemma 2.4.3. Let = € {V/,s',¢,p}. The fundamental corepresentation of
A*(n)iontains a one dimensional non-trivial corepresentation U, which fulfils
U,RKU, ~1. If =€ {V/,s'} then U, ~ U,.

Proof. Consider # =V, s’ first. The element z = )}, u;; is easily seen to be
a unitary group-like element, so it corresponds to a one dimensional unitary
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corepresentation of A, (n). Consider the group S, ®Z/2Z c U, as permutation
matrices with entries +1 and —1. Let Us @z/2z be the canonical fundamental
corepresentation of C(S, @ Z/2Z). Then the image of z under the map
(As(n),Us) — (C(S, ®Z/2Z),Us, gz/2z) is —1, s0 z is non-trivial.

For # = p, c consider z := idq: as coming from the copy of C(Sl). This copy
is contained in A4 (n), since the trivial corepresentation is contained in the
fundamental corepresentation of Ay, (n) and Ag(n).

Using the relations of A,(n) we can check the rest of the claim by simple
calculations. 0

Remark 2.4.4. The last lemma shows, that the fusion rules of neither of the
quantum groups A, (n) for € {¥', s, ¢, p} can be described by a free fusion ring.
Actually in a free fusion ring any element a # 1 satisfies a - a* # 1. This gives
two counterexamples to the conjecture that for n > 4 the fusion rules of all
orthogonal free quantum groups can be described by a free fusion ring, which
was stated in [25].

Remark 2.4.5. The fundamental corepresentation of any matrix quantum
group that has (Ag(n),Us) as a sub quantum group cannot be the sum of more
than two irreducible corepresentations. In particular the last lemma already
gives a decomposition U ~ U, HV with U, non-trivial and one dimensional
and V irreducible, where U is the fundamental corepresentation of A, (n).

Proof of Theorem 2.4.1. The isomorphism of (2) is given by As(n)®C*(Z/2Z) —
Ae(n) + uj; ®1 > uf; - 2, 1 ®ug = z. This map exists since z is central in
Ag(n) as an easy calculation shows. The inverse map is given by

Ag(n) = As(n) ® C*(2/22) - uj; — uj; @ ug-

In order to prove (3) we use again an orthogonal matrix T' € M, (C) such
that 7(1,0,...,0)* = (1//n,...,1/x/n)". Then a matrix U € M, (A) for some
C*-algebra A satisfies the relations of Uy, if and only if T*UT is a block
matrix with a self-adjoint unitary in the upper left corner and an orthogonal
(n — 1) x (n — 1) matrix in the lower right corner. This proves Ay (n) =
As(n—1)+ C*(Z/2Z) = Ap(n) = C*(Z/2Z).

The isomorphism of (4) is given by

Ay(n) #C(S") — A,(n) : ui; e g - 2%, idg e 2.

The isomorphism of (5) is given by

Ap(n) *C(S') = Ac(n) : u?j g 2", idgr e 2.

All the isomorphisms respect the comultiplication, since z is group-like. Hence,
they are isomorphisms of quantum groups. O
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2.5 Fusion rules for free products and the quantum
group Ay(n)

In this section we describe the fusion rules of the free complexification Ay (n) =

—~———

Ap(n). Instead of referring to Ay (n) explicitly, we will work in a more general
setting and deduce its fusion rules as a corollary. Roughly the main statement
of this section is given by the following theorem. See theorem 2.5.5 for a precise
statement.

Theorem 2.5.1. Let (A,U) be an orthogonal compact matriz quantum group,
i.e. U =U, such that its fusion rules are [ree. Assume further that 1 ¢ UE2k+1
for any k € N. Then the fusion rules of (A,U) are free and can be described in
terms of the fusion rules of (A, U).

The following theorem is due to Wang [231].

Theorem 2.5.2. Let (A,A4) and (B,Ap) be compact quantum groups.
Let (UY)peer and (UP)ges be complete sets of representatives of irreducible
corepresentations of A and B, respectively. Then the corepresentations
(W - W) with n € N, all WY in {U*|a € &/} and {U®|B € B}
and neighbours not from the same set, form a complete set of irreducible
representations of the free product (A, A4) = (B, Ap).

The following observation will be useful when studying the fusion rules of a free
complexification.

Remark 2.5.3. Let A # B be a free product of compact quantum groups with
irreducible corepresentations W7 [x] - - - [x] W7 and W R KW as in the
last theorem. Then

1. If WY and W are not corepresentations of the same factor of the free
product, then W - - I W™ QW [x]--- &K W is an irreducible
corepresentation of A x B.

2. If W and W® are corepresentations of the same factor and W x W0t =
Zf;l W€ + 6y way + 1 18 the decomposition into irreducible corepresen-
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tations, then
WNK---mW™ W51 ___Wém

k
— Z(W’Yl ,,,W"/nfl WGiW(Sz "'Wém)

i=1
+ o we  WI R AW W2 R WO

and the first k¥ summands of this decomposition are irreducible.

For the rest of this section fix an orthogonal compact matrix quantum group
(A,U) such that its fusion rules are described by a free fusion ring over the
fusion set S. Assume further that 1¢ U X2k+1 for any ke N.

Note that the fusion ring of A is the fusion subring of Rep(A * C(S')) that is
generated by U X z, where z denotes the identity on the circle.

We will construct the free complexification S of S and prove that the fusion
rules of (A U) are described by S. We begin by constructing S.

Let Rep™  (respectively Rep;) be the set of classes of irreducible
corepresentations of A that appear as subrepresentations of an even (respectively
odd) tensor power of U. We have Rep™™,., n Repi; = & due to Frobenius
duality and the requirement 1 ¢ U?**! for all k € N. Let Seven = S (resp.
Sodd © S) be the set of elements corresponding to corepresentations from

irr

Rep'™.. (resp. Rep™,). The set S is then by definition the disjoint union
Seven L Seven U Sodd LI Sodq. Denote the first copy of Seven (1esp. Sodd) by Sivin

(resp. S(()E)d) and the second one by s, (resp. S(Ei)d)

What follows is motivated by the following point of view:

Remark 2.5.4. We consider element of Sé\l,()en as a plain copy of those in Seyen-
The elements of ngm are of the form z* - s - z for some s € Seyen. Similarly we
consider elements of Sc(,ld)d as s+ z and elements of SC()Qd)d as 2%+ s for s € Syqq.

Define a conjugation on S by the conjugation on S leaving Se‘l,en and Séiln
globally invariant and exchanging s4 d d and SO 44+ Note that Seven = Seven and

Sodd = Sodd, i-e. the conjugation on S is well defined. A fusion on S can be
defined according to the following table.
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| s, 52 s 52
Shn || SGa U {2} & ST (@) o
S, & S, U {D) & S 0 ()
S%’d o fffd vigl| o SONVETZT
SO S8y o (2 & sC. o) )

The row gives the element which is fused from the right with an element coming
from the set indicated by the column. The fusion is empty if this is indicated
by the table and is otherwise the usual fusion of two elements of S lying in the
part of S indicated by the table. Note that this definition makes sense, since
Seven * Sevens Sodd * SoddNC Seven U {@} and Seven * Sodd, Sodd * Seven C Sodd U {@}
It is easy to see that S with this structure is a fusion set.

Now we can state a precise version of 2.5.1.

Theorem 2.5.5. Let (A,U) be an orthogonal compact matriz quantum group
such that its fusion rules are described by a free fusion ring over the fusion set
S. Assume further that 1 ¢ UBRE+1 for any k € N. Then the fusion rules of
(A U) are given by the free complexification S of S.

We construct a complete set of corepresentations of A. In order to do so we
associate an irreducible corepresentations of (A,U) to any element of R :=
Repaven U RePoven, U Repogqa U Repogg. We denote the i-th copy of Rep.,

even even even

Rep™ ) by Rep™:) (Rep!™ (l) . Let V be a irreducible corepresentation in
( Podd Yy Peven Poa %
Rep™. . Then V and z* - V - z are corepresentations of A. Actually, if V is an

irreducible subrepresentation of UX?* then V is an irreducible subrepresentation
of (URU ).k and z* - V - z is an irreducible subrepresentation of (U & U )&,
We consider V as an element of Rep5(!

2) even
II‘I‘
Repever, -

and z* -V - z as an element of

Similarly we see that if V' € Repgéd then we can associate with it

corepresentations V' - z € Repgé d( )and 2% -V e Rep;réd( ). Note that elements

s from S give corepresentations Us by this identification. Consider a word
w = wi ... wg with letters in R. We say that w is reduced if in the sequence
Uw,s--.,Uw, a zis never followed by z* and U, is always followed by z or z*.
In formal terms:

Vi<i<k—1:(w; €Rep™Hy Repi)r:if) = wiy1 € Rep@ Replr(id@))/\

even

(w; € Repliat?) U Repl(” = wiyy € Replil!) v Replid”)
Any such reduced word w = wy ... wy gives rise to an irreducible corepresen-
tation of A by U = le X...X ka and different reduced words give rise to

inequivalent Corepresentations by 2.5.2. Since any iterated tensor product of
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U and U decomposes as a sum of irreducible corepresentations of the type ﬁw,
where w is a reduced word with letters in R, any irreducible corepresentation
of A is equivalent to some Up,,.

Definition 2.5.6. Consider now a word w = wy ... wy with letters in S. Tt is
called connected if every z is followed by a z*. Formally:

VI<i<h—1:(we S, u S = wi e S, 0 S A

even even

Sc(,ii)d = Wiy1 € Séﬁln v S(E?i)d)

(w; € S&)

even
The following definition says how we can associate irreducible corepresentations
of A to words with letters in S.

Definition 2.5.7. If w is an arbitrary word with letters in S then it has a
unique decomposition w = 1 ...x; into maximal connected words. This gives
rise to a unique reduced word w’ with letters in R. We set U w!

Next we have to do some preparations in order to prove Theorem 2.5.5.

Definition 2.5.8. Let x = 21 ...2,, be a word in S. Then ; is the letter in
S corresponding to x; and T := 2125 ... Ty,.

Remark 2.5.9. Note that if x is a connected word with letters in S then
according to remark 2.5.4 it can be written as 2% - & - 2°1, ig,41 € {0,1,—1} and
we have U, = 2% X U; X 2.

Definition 2.5.10. Let x,y be connected words with letters in S. We say that
(z,y) fits together if xy is a connected word.

Lemma 2.5.11. Letx =x1...2p and y = y1 . Yn be connected words with
letters in S such that (xm,yl) fits together. Wmte U, = 20 }U; ®z" and
U = ZJOIU X z7t. Then

ﬁrp ﬁy = Zio ( Z Ua(} Uvg) Zjl = Z ﬁab ﬁwb-

r=ac,y=cb r=ac,y=cb

Proof. Since (z,y) fits together, we have 2% X270 = 1. So by Remark 2.5.3 the
first equation follows. We have to prove that for all x = ac, y = ¢b

1L 20 ®}U,; K2 = U, U

2. zlo Udl} Zjl =Ugp.



FUSION RULES FOR FREE PRODUCTS AND THE QUANTUM GROUP Ak(N) 47

In order to prove (1), note that ab is connected, since a, b are connected and
(a, b) fits together. So (1) follows from the way irreducible corepresentations
are associated to connected words remarked in 2.5.9.

For (2) note that, since (a, b) fits together, & - b= ifand only ifa b= . If
a-b#  then it is connected and (2) follows by remark 2.5.9 again. O

Now we can give the proof of Theorem 2.5.5

Proof of Theorem 2.5.5. Let x = x1...2 and y = y1...y; be words with
letters in S. We have to show that

ﬁzﬁy = Z ﬁabﬁwb

r=ac,y=cb

Letz =u1...uy and y = vy ...v, be theNdecomposition in maximal connected
words. We identify them with letters in R. Then

U,

2 WUy 2" KUy K22 K- KUy, K27 K 2™ KUy, K25
N ,

~

Uy — ZJO va1 ZJl Z]z va2 - Z]nfl Uv,{_l Z]n van Z]n+1
—_—

=U,,

Withila ) iM—27j37 7]n € {17 *}a 7:OvimajOan € {Oa *} and 7:m,—ly7;m+17jlajn-&-1 €
{0, 1}.

We are going to consider the two cases (xx,y1) do or do not fit together.
Assume that (xy,71) do not fit together. This means z'm+1 - 290 # 1. Then
(790 [711 is irreducible by Theorem 2.5.2. Moreover, zy = Uq ... UpV1 ... Uy 1S
a decomposition in maximal connected words. So [735 ﬁy = ZNImy On the
other hand (zy,y1) not fitting together implies z # 71 and = - y1 = . So
szmyzzb Uy B Unp = U'xy This completes the proof for the first case.
Assume now that (z,y;) fits together. This means z*m+1 . 270 = 1. By Lemma
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2.5.11

U, Uy = 20 qul Xz [X]--- Uun:_1 X 211

(D) UaBUw)R2? ®Us R2P R KUy, 727

Um =ac,v] =cb
=2"NUy; K2" K- - X Uy,; , K2 X

(( Z ﬁvab ﬁa-b) 5um7ﬁ : 1)

U =ac,v; =cb,|a|=1 or |b|=1
o2 Uy, POEN Uy, Sdn+1
By applying the induction hypothesis to the term

o Udl ___Zlm,—1 5um,71 . 12]2 vaz _,_zjn+1

= 6um,ﬁ ' Uulu2~~-u1n71 Uvzvs...vn

we obtain

ﬁm ﬁy = Z fjab ﬁwlr

r=ac,y=cb

O

We are now going to deduce the fusion rules of Ay (n). The following result is
proven in [25] and describes the fusion rules of Ay(n).

Theorem 2.5.12. Let Sy, := {u,p} with fusionu-u=p-p=p,u-p=p-u=u
and trivial conjugation. The fusion rules of (An(n),Uy) are given by the free
fusion ring over Sy in such a way that U, ~ Uy and Uy H1 ~ (ufj)

Using this theorem we obtain the following corollary in the case A = Ax(n).

Corollary 2.5.13. The irreducible corepresentations of Ax(n) are described by
the fusion set Sy := {u,v,p,q} with fusion given by

Qs e s
SENESERNIES
Qe
Q= § 2|
SENERN(ES
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and conjugationw =v, p=p, ¢ =q
The elements of Sy correspond to the following corepresentations.

The class of the fundamental corepresentation U is U,.

The class of U is U,.

The class of the corepresentation (uf; - u;j) is Up H 1

The class of the corepresentation (u;j - uf;) is Ug H1

Proof. We only have to prove the part about the concrete description of U, U,,
U, and U,. The fact that U, is the class of the fundamental corepresentation is
obvious from the construction. U, ~ U follows directly.

It is easy to check that (uf; - u;;) and (us; - uf;) are corepresentation of Ay (n).
We have the decomposition U KU ~ Uy, U, B 1. Moreover the construction
in this section shows that Uy, is n?> —n dimensional and Up is n— 1 dimensional.
Since (u;; ufj) is non trivial, it suffices to give at least two linearly independent
intertwiners from the n dimensional corepresentation (u;; - uf;) to U X U. Two
such intertwiners are C* — (C")®2 : ¢; = e; ® ¢; and C"* — (C")®? : ¢;
Zj ej ® ej.

The proof for (u;; - uj;) works similarly. O






Chapter 3

Stable orbit equivalence of
Bernoulli actions of free

groups and isomorphism of
some of their factor actions

This chapter is based on our joint work with Niels Meesschaert and Stefaan
Vaes [138]. We give an elementary proof for Lewis Bowen’s theorem saying that
two Bernoulli actions of two free groups, each having arbitrary base probability
spaces, are stably orbit equivalent. Our methods also show that for all compact
groups K and every free product I' of infinite amenable groups, the factor
I' ~ KY/K of the Bernoulli action I' ~ K% by the diagonal K-action, is
isomorphic with a Bernoulli action of T'.

3.1 Introduction

Free, ergodic and probability measure preserving (p.m.p.) actions I' ~ (X, u)
of countable groups give rise to II; factors L*(X) x I through the group
measure space construction of Murray and von Neumann. It was shown in
[196] that the isomorphism class of the II; factor L*(X) x I" only depends on
the orbit equivalence relation on (X, ) given by I' ~ (X, ). This led Dye in
[69] to a systematic study of group actions up to orbit equivalence, where he
proved the fundamental result that all free ergodic p.m.p. actions of Z are orbit

51
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equivalent. Note that two such actions need not be isomorphic (using entropy,
spectral measure, etc). In [151] Ornstein and Weiss showed that actually all
orbit equivalence relations of all free ergodic p.m.p. actions of infinite amenable
groups are isomorphic with the unique ergodic hyperfinite equivalence relation
of type I1;.

The nonamenable case is far more complex and many striking rigidity results
have been established over the last 20 years, leading to classes of group actions
for which the orbit equivalence relation entirely determines the group and its
action. We refer to [191, 94, 97] for a comprehensive overview of measured
group theory. On the other hand there have so far only been relatively few orbit
equivalence “flexibility” results for nonamenable groups. Two results of this
kind have been obtained recently by Lewis Bowen in [40, 41]. In [40] Bowen
proved that two Bernoulli actions F,, —~ X¢» and F,, ~ XT" of the same free
group F,,, but with different base probability spaces, are always orbit equivalent.
Note that this is a nontrivial result because Bowen proved earlier in [39] that
these Bernoulli actions can only be isomorphic if the base probability spaces
(Xo, po) and (X7, u1) have the same entropy.

Two free ergodic p.m.p. actions I'; ~ (X, u;) are called stably orbit equivalent
if their orbit equivalence relations can be restricted to non-negligible measurable
subsets U; © X; such that the resulting equivalence relations on Uy and U;
become isomorphic. The number p;(U1)/po(Up) is called the compression
constant of the stable orbit equivalence. In [41] Bowen proved that the Bernoulli
actions [, —~ X([)F "and F,, = X f ™ of two different free groups are stably orbit
equivalent with compression constant (n —1)/(m — 1).

The first aim of this chapter is to give an elementary proof for the above
two theorems of Bowen. The concrete stable orbit equivalence that we obtain
between F,, ~ X§ and F,, ~ XI™ is identical to the one discovered by Bowen.
The difference between the two approaches is however the following: rather
than writing an explicit formula for the stable orbit equivalence, we construct
actions of F,, and F,, on (subsets of) the same space, having the same orbits
and satisfying an abstract characterization of the Bernoulli action.

Secondly our simpler methods also yield a new orbit equivalence flexibility
(actually isomorphism) result that we explain now. Combining the work of
many hands [99, 115, 98] it was shown in [81] that every nonamenable group
admits uncountably many non orbit equivalent actions (see [109] for a survey).
Nevertheless it is still an open problem to give a concrete construction producing
such an uncountable family. For a while it has been speculated that for any
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given nonamenable group I' the actions
{F ~ K'/K ‘ K a compact second countable

group acting by diagonal translation on KT } (3.1)

are non orbit equivalent for nonisomorphic K. Indeed, in [175, Proposition
5.6] it was shown that this is indeed the case whenever every 1-cocycle for the
Bernoulli action I' ~ KT with values in either a countable or a compact group
G is cohomologous to a group homomorphism from I" to G. By Popa’s cocycle
superrigidity theorems [168, 171], this is the case when I' contains an infinite
normal subgroup with the relative property (T) or when I' can be written as
the direct product of an infinite group and a nonamenable group. Conjecturally
the same is true whenever the first £2-Betti number of I' vanishes (cf. [158]).

In the last section of this chapter we disprove the above speculation whenever
I'=Aq#---= A, is the free product of n infinite amenable groups, in particular
when I' = [,,. We prove that for these I" and for every compact second countable
group K the action I' ~ KT /K is isomorphic with a Bernoulli action of T.
As we shall see, the special case I' = F,, is a very easy generalization of [152,
Appendix C.(b)] where the same result is proven for K = Z/2Z and T = Fs.

More generally, denote by G the class of countably infinite groups I' for which
the action I' ~ K'/K is isomorphic with a Bernoulli action of I'. Then by
[152] the class G contains all infinite amenable groups. We prove in Theorem
3.5.2 that G is stable under taking free products. By the results cited above,
G does not contain groups that admit an infinite normal subgroup with the
relative property (T) and G does not contain groups that can be written as the
direct product of an infinite group and a nonamenable group. So it is a very
intriguing problem which groups belong to G.

Terminology and notations

A measure preserving action I' ~ (X, i) of a countable group I" on a standard
probability space (X, ) is called essentially free if a.e. x € X has a trivial
stabilizer and is called ergodic if the only I'-invariant measurable subsets of X
have measure 0 or 1. Two free ergodic probability measure preserving (p.m.p.)
actions T' —~ (X, u) and A —~ (Y, n) are called

e conjugate, if there exists an isomorphism of groups é : I' = A and an
isomorphism of probability spaces A : X — Y such that A(g-z) =
0(g) - A(z) for all g € T and a.e. x € X;
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e orbit equivalent, if there exists an isomorphism of probability spaces
A: X — Y such that A(T'-z) = A- A(z) for a.e. x € X;

o stably orbit equivalent, if there exists a nonsingular isomorphism A : U — V
between non-negligible measurable subsets ¢/ € X and V < Y such that
AT -znlU)=A-A(x) "V for a.e. z € U. Such a A automatically scales
the measure by the constant n(V)/u(U), called the compression constant
of the stable orbit equivalence.

We say that two p.m.p. actions I' —~ (X, u;) of the same group are isomorphic if
they are conjugate w.r.t. the identity isomorphism id : I' — T, i.e. if there exists
an isomorphism of probability spaces A : Xy — X7 such that A(g-z) = ¢g- A(z)
for all g e I" and a.e. x € Xj.

Recall that for every countable group I' and standard probability space (X, o),
the Bernoulli action of I' with base space (X, i10) is the action I' ~ X} on the
infinite product X} equipped with the product probability measure, given by
(g-2)n = xpy for all g, h € T and z € XJ. If T is an infinite group and (Xo, uo)
is not reduced to a single atom of mass 1, then I' ~ X[ is essentially free and
ergodic.

Statement of the main results

We first give an elementary proof for the following theorem of Lewis Bowen.

Theorem 3.A (Bowen [41, 40]). For fized n and varying base probability space
(Xo, po) the Bernoulli actions F,, —~ Xg” are orbit equivalent.

If also n varies, the Bernoulli actions F,, —~ Xg" and F,, —~ Yy ™ are stably
orbit equivalent with compression constant (n —1)/(m — 1).

Next we study factors of Bernoulli actions and prove the following result.

Theorem 3.B. IfI' = Ay % --- x A, is the free product of n infinite amenable
groups and if K is a nontrivial second countable compact group equipped with its
normalized Haar measure, then the factor action T' —~ K /K of the Bernoulli
action T' ~ KU by the diagonal translation action of K is isomorphic with a
Bernoulli action of T'. In particular, keeping n fized and varying the A; and K,
all the actions T —~ K¥ /K are orbit equivalent.

In the particular case where T' = F,,, the action T —~ K /K is isomorphic with
the Bernoulli action T' ~ (K x --- x K)'' whose base space is an n-fold direct
product of copies of K.
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3.2 Preliminaries

Let (X, p) and (Y, n) be standard probability spaces. We call A a probability
space isomorphism between (X, u) and (Y, n) if A is a measure preserving Borel
bijection between conegligible subsets of X and Y. We call A a nonsingular
isomorphism if A is a null set preserving Borel bijection between conegligible
subsets of X and Y.

Given a sequence of standard probability spaces (X, i), we consider the
infinite product X = [], X, equipped with the infinite product measure p.
Then, (X, 1) is a standard probability space. The coordinate maps 7, : X — X,
are measure preserving and independent. Moreover, the Borel g-algebra on X
is the smallest o-algebra such that all m,, are measurable.

Conversely, assume that (Y,7) is a standard probability space and that 6,, :
Y — X, is a sequence of Borel maps. Then, the following two statements are
equivalent.

1. There exists an isomorphism of probability spaces A : Y — X such that
Tn(A(y)) = 0,(y) for ae. yeY.

2. The maps 6,, are measure preserving and independent, and the o-algebra
on Y generated by the maps 6,, equals the entire Borel o-algebra of Y up
to null sets.

The proof of this equivalence is standard: if the 6,, satisfy the conditions in 2,
one defines A(y), := 0,(y).

Assume that T' —~ (X, p) and A —~ (Y,n) are essentially free ergodic p.m.p.
actions. Assume that A : X — Y is an orbit equivalence. By essential freeness,
we obtain the a.e. well defined Borel map w : I’ x X — A determined by

Alg-z) =w(g,z) - A(x) forall gel and ae. z€ X .

Then, w is a 1-cocycle for the action T' ~ (X, 1) with values in the group A. In
general, whenever G is a Polish group and T' —~ (X, i) is a p.m.p. action, we
call a Borel map w: I' x X — G a 1-cocycle if w satisfies

w(gh,z) = w(g,h-z)w(h,z) forall gghel and ae. x€ X .
Two 1-cocycles w,w’ : I' x X — G are called cohomologous if there exists a Borel
map ¢ : X — G such that

W(g,z) = p(g-x)w(g,z)p(x)" ! forall geTl andae zeX.
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Also a stable orbit equivalence gives rise to a 1-cocycle, as follows. So assume
that I' —~ (X, u) and A —~ (Y, n) are essentially free ergodic p.m.p. actions and
that A : Y — V is a nonsingular isomorphism between the nonnegligible subsets
Uc X and VY, such that AUUNT-2) =V nA-A(x) for a.e. z €U. To
define the Zimmer 1-cocycle w : I' x X — A, one first uses the ergodicity of
' ~ (X, u) to choose a Borel map p : X — U satisfying p(z) € T - z for a.e.
xr € X. Then, w: I" x X — A is uniquely defined such that

Alp(g-x)) =w(g,x) - A(p(z)) forall geT and ae. x€ X .

One checks easily that w is a 1-cocycle and that, up to cohomology, w does not
depend on the choice of p: X — U.

We often use 1-cocycles for p.m.p. actions I' —~ (X, u) of a free product group
I' =T *I's. Given 1-cocycles w; : I'; x X — G, one checks easily that there is a
unique 1-cocycle w : I' x X — G, up to equality a.e., satisfying w(g, z) = w;(g, )
for all g e I'; and a.e. x € X.

3.3 Orbit equivalence of co-induced actions

Let A —~ (X,u) be a p.m.p. action. Assume that A < G is a subgroup.
The co-induced action of A —~ X to G is defined as follows. Choose a map
r: G — A such that r(A\g) = Ar(g) for all g € G, A € A and such that r(e) = e.
Note that the choice of such a map r is equivalent to the choice of a section
0 : A\I' = T satisfying 8(Ae) = e. Indeed, the formula g = r(g) f(Ag) provides
the correspondence between 6 and r.

Once we have chosen 7 : G — A, we can define a 1-cocycle Q : A\G x G — A for
the right action of G on A\G, given by Q(Ak, g) = r(k)~1r(kg) for all g,k € G.

Classically, whenever w : G x X — A is a l-cocycle for an action of G on
X, we can induce an action A —~ Y to an action G —~ X x Y given by

g-(z,y) = (9-z,w(g,2)-y).

The co-induced action is defined by a similar formula. So assume that A —
(X, ) is a p.m.p. action and that A < G is a subgroup. Choose r : G — A with
the associated 1-cocycle Q : A\G x G — A, as above. Then the formula

G —~ XMNC  where (9-Y)ar = QUAE, g) - Yakg

yields a well defined action of G on the product probability space XM\G. Tt is
easy to check that G —~ X\ is a p.m.p. action and that (X-y)xe = X - ya. for
all A € A and y € X*\&. A different choice of r : G — A leads to a cohomologous
1-cocycle 2 and hence an isomorphic action.
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Given a subgroup A < G, a subset I < G is called a right transversal of A < G
if I n Ag is a singleton for every g € G.

Up to isomorphism the co-induced action can be characterized as the unique
p-m.p. action G — Y for which there exists a measure preserving map p : ¥ — X
with the following properties.

1. p(A-y)=X-p(y) forall A\e A and a.e. ye Y.

2. The factor maps y — p(g-y), g € G, generate the Borel o-algebra on Y,
up to null sets.

3. If I ¢ G is a right transversal of A < G, then the maps y — p(g-y), g € I,
are independent.

To prove this characterization, first observe that the co-induced action satisfies
properties 1, 2 and 3 in a canonical way, with p(y) = yae. Conversely assume
that G —~ Y satisfies these properties. Fix a right transversal I < G for
A < G, with e € I. Combining properties 1 and 2, we see that the factor
maps y — p(g-vy), g € I, generate the Borel o-algebra on Y, up to null sets.
A combination of property 3 and the characterization of product probability
spaces in Section 3.2 then provides the isomorphism of probability spaces
A:Y — XMNC given by A(y)a, = p(g-y) for all y € Y, g € I. The right
transversal I ¢ G for A < G allows to uniquely define the map r : G — A such
that r(Ag) = A for all A € A and g € I. This choice of r provides a formula for
the co-induced action G —~ XM Tt is easy to check that A(g-y) = g- A(y)
for all g € G and a.e. y € Y.

Remark 3.3.1.

1. The above characterization of the co-induced action yields the following
result that we use throughout the chapter: the co-induction of the Bernoulli
action A — (Xo, pto)” is isomorphic with the Bernoulli action G — (X, 10)€.
Indeed, the Bernoulli action G —~ (X, 110)®, together with the canonical factor
map X§ — X{, satisfies the above characterization of the co-induced action.

2. In certain cases, for instance if G = I'+ A, there exists a group homomorphism
m: G — A satisfying m(\) = A for all A € A. Then r : G — A can be taken equal
to m and the co-induced action G~ X\ is of the form (- y)ax = 7(9) - Yakg
for all g,k € G and y € XMC,

3. We often make use of diagonal actions: if A —~ (X,u) and A —~ (Y, )
are p.m.p. actions, we consider the diagonal action A —~ X x Y given by
A-(z,y) = (A-x, A-y). We make the following simple observation: if A < G and
if we denote by G —~ X , resp. G — }W/, the co-induced actions of A — X, resp.
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A ~Y, to G, then the co-induced action of the diagonal action A —~ X x Y to
G is precisely the diagonal action G —~ X x Y.

4. Assume that A —~ (X, p) is a p.m.p. action and that A < G is a subgroup.
Denote by G —~ Y the co-induced action and by p : ¥ — X the canonical
A-equivariant factor map. Whenever Ag : X — X is a p.m.p. automorphism
that commutes with the A-action, there is a unique p.m.p. automorphism
A:Y — Y, up to equality a.e., that commutes with the G-action and such that
p(A(y)) = Ao(p(y)) for ae. y € Y. Writing Y = XM the automorphism A is
just the diagonal product of copies of Ag. Later we use this easy observation to
canonically lift a p.m.p. action K —~ (X, u) of a compact group K, commuting
with the A-action, to a p.m.p. action K — Y that commutes with the G-action.
Moreover, p becomes (A x K)-equivariant. Writing ¥ = X MI' " the action
K —~Y is the diagonal K-action.

We prove that orbit equivalence is preserved under co-induction to a free product.
We actually show that the preservation is “K-equivariant” in a precise way
that will be needed in the proof of Theorem 3.B. The case where K = {e}, i.e.
co-induction from A to T # A, is due to Lewis Bowen [41]. Recall that similarly
as in the case of countable groups, a p.m.p. action G —~ (X, ) of a second
countable locally compact group G is called essentially free if a.e. x € X has a
trivial stabilizer (cf. Lemma 3.5.3 in the appendix).

Theorem 3.3.2. Let Ay, A1 and T be countable groups and K a compact second
countable group. Assume that A; x K —~ (X;, u;) are essentially free p.m.p.
actions. Denote G; :=T" + A; and denote by G; ~Y; the co-induced action of
A; = X, to G;, together with the natural actions K —Y; that commute with
G; ~Y,; (see Remark 3.5.1.4).

o Ifthe actions A; ~ X;/K are orbit equivalent, then the actions G; ~ Y;/K
are orbit equivalent.

o If the actions A; ~ X;/K are conjugate w.r.t. the group isomorphism
0 : Ao = Ay, then the actions G; — Y;/K are conjugate w.r.t. the group
isomorphism id = § : Gog — G1.

Proof. We start by proving the first item of the theorem.

Let Ag : Xg/K — X1/K be an orbit equivalence between the actions A; —~
X;/K. Denote by x — T the factor map from X; to X;/K. Since K acts
essentially freely on X; and K is compact, Lemma 3.5.3 in the appendix
provides measurable maps 6; : X; — K satisfying 0;(k - ) = k6;(z) a.e. and
such that

0;: X; > K x XZ/K X (91(37),5)
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is a measure preserving isomorphism. Defining A := 7 o(id x Ag) 06y, we have
found a measure preserving isomorphism A : Xy — X, that is K-equivariant
and satisfies A((Ag x K) - z) = (A1 x K) - A(z) for a.e. z € X;. Using this A
we may assume that Ag, A; and K act on the same probability space (X, u)
such that the K-action commutes with both the A;-actions and such that
(Ao x K)#x = (A1 x K) -z for a.e. z € X. Here and in what follows, we denote
the action of Ag x K by * and the action of Ay x K by . We have kxx =k-x
for all k€ K and a.e. z € X.

Write Y = XA1\'*A1 and denote by - the co-induced action Gy —~ Y of Ay —~ X
to G1. Also denote by - the diagonal action K — Y, which commutes with
G1 ~ Y. Define the (A; x K)-equivariant factor map p:Y — X : p(y) = ya,e.

Define the Zimmer 1-cocycles
n:AoxX > M xK:n(h,z)-z=Xd+x forae zeXi, A€,
A xXo>AxK:n(A,z)sxz=X\ -2 forae zeX,\ €.
Since the Ag-action commutes with the K-action on X, we have that
n(Xo, k * ) = kn(Ao,z)k~* forall ke K,\ge Ay and a.e. 7€ X . (3.2)
We define a new action Gg —~ Y denoted by # and determined by
yry=7y for yel,yeY and Aoy =n(ro,p(y)) y for Ao €Ag,yeY .
Because of (3.2), the action Gy ~ Y commutes with K —~ Y.

Define w : Gy x Y — G; x K as the unique 1-cocycle for the action Gy ~= Y
satisfying w(v,y) = v for all v € ' and w(\g,y) = n(Xo, p(y)) for all Ao € Ap.
Then the equality g * y = w(g,y) - y holds when g € I" and when g € Ag. So the
same equality holds for all g € Gy and a.e. y € Y. In particular Go* g < Gy -y
for a.e. ye Y/K.

Define w’' : G; x Y — Gy x K as the unique 1-cocycle satisfying w'(vy,y) = v
for all v € T" and w'(A1,y) = 1'(A1, p(y)) for all Ay € A;. As above, it follows
that g -y = w'(g,y) *y for all g€ G and a.e. y € Y. Hence, G; - 7§ < Gp # 7 for
a.e. € Y/K. We already proved the converse inclusion so that G -7 = Go 7
for a.e. ye Y/K.

We prove now that the action Gy ~= Y together with the Ag-equivariant factor
map p: Y — X satisfies the abstract characterization for the co-induced action
of Ag = X to Gy. Once this is proven, the theorem follows because p is moreover
K-equivariant and the action Gy —~ Y commutes with the K —~ Y (see Remark
3.3.1.4).
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We first need to prove that the maps y — p(g # y) are independent and
identically distributed when g runs through a right transversal of Ag € Gq. If
g € G; =T« A;, denote by |g| the number of letters from I" — {e} that appear
in a reduced expression of g. By convention, put |g| = 0 if g € A;. Define the
subsets I, € Gg given by Iy := {e} and

I, :={g € Go||g] =n and the leftmost letter

of a reduced expression of g belongs to I' — {e} } . (3.3)

Similarly define J, < G; and note that U::O Jn is a right transversal for
A1 <T'#A;. So, in the construction of the co-induced action, we can choose the
Aj-equivariant map 7 : G; — Aj such that r(g) = e for all g € J,, and all n € N.
Hence (9 y)a,e = Ynr,q forall ge Jp,, ne N and a.e. y € Y. For j € Aj\Gy we
put |j| =nif j = Ayg with g € J,,.

Denote w(g,y) = (w1(g9,y),wk(g,y)) with wi(g,y) € G1 and wk(g,y) € K.
Similarly write n(\,z) = (m (A, 2),nx (A x)). Note that for A € Ag — {e} we
have n1 (A, x) # e for a.e. x € X. Indeed, if 1 (\,xz) = e for a fixed A € Ag — {e},
then the element (X, nx (X, 2)~1) of Ag x K stabilizes x and the essential freeness
of Ag x K —~ X implies that this can only happen for x belonging to a negligible
subset of X. One then proves easily by induction on n that

o fora.e. yeY and all n € N, the map g — w1(g,y) is a bijection of I,, onto
JTL?

e forallneN,ge€ I,, the map y — w(g, y) only depends on the coordinates
Yis |j| <n-—1

Since for all g € I,, we have wi(g,y) € Jy, it follows that

plg#y) = (9*Yne = (WG Y) Yae =wKr(9,Y) Yr i (g.) (3.4)

foralln e N, g € I,, and a.e. y € Y. We now use Lemma 3.3.4 to prove that
for all n € N, the set {y — p(g *y) | g € I,,} forms a family of independent
random variables that are independent of the coordinates y;, |j| < n — 1, and
that only depend on the coordinates y;, |j| < n. More concretely, we write
JIn = {A1g9 | 9| < n} and we apply Lemma 3.3.4 to the countable set J,, — Jp,—1,
the direct product

Z = XIn=t x XIn=In

and the family of measurable maps wy : Z — K X (J, — Jn—1) indexed by
g € I,, only depending on the coordinates y;, j € J,—1 and given by

wg 1y = (wi(9,y), Mwi(g,y)) -
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Since g — wi(g,y) is a bijection of I,, onto J,,, we have that g — Ajwi(g,y) is
a bijection of I,, onto J,, — Jn—1. A combination of Lemma 3.3.4 and formula
(3.4) then implies that {y — p(g*y) | g € I} is a family of independent random
variables that are independent of the coordinates y;, j € J,,—1. By construction,
these random variables only depend on the coordinates y;, |j| < n. Having
proven these statements for all n € N, it follows that {y — p(g*y) | g€, In}
is a family of independent random variables.

Denote by By the smallest o-algebra on Y such that Y — X7 : y +— p(g #y) is
Bp-measurable for all g € Gy. It remains to prove that By is the entire o-algebra
of Y. Note that by construction, the map ¥ — Y : y +— g =y is Bp-measurable
for all g € Gy. Since p is K-equivariant and the actions K —~ Y and Gg =Y
commute, we also get that the map y — k =y is Byp-measurable for every k € K.
We must prove that y — y; is Byp-measurable for every n € N and ¢ € A1\G;
with |¢| = n. This follows by induction on n, because for all g € J,, we have

Ynig = P(g-y) = p(w'(g,9) *y)
and because y — w’(g,y) only depends on the coordinates y;, |j] <n — 1.

To prove the second item of the theorem, it suffices to make the following
observation. If the actions A; —~ X;/K are conjugate w.r.t. the isomorphism
6 : Ap — A4, then in the proof of the first item, the Zimmer 1-cocycle 7 is of
the form n(Ag, ) = (6(Xo), K (Ao, x)). So the 1-cocycle w: Gg x Y —» G x K
is of the form w(g,y) = ((id * 0)(g9),wk(g,y)). This immediately implies that
the actions G; —~ Y;/K are conjugate w.r.t. the isomorphism id * 0. O

Corollary 3.3.3 (Bowen [41]). For fized n and varying base probability space
(Xo, po) the Bernoulli actions F,, —~ Xg" are orbit equivalent.

Proof. By Remark 3.3.1.1, the co-induction of a Bernoulli action is again a
Bernoulli action over the same base space. Let Xy and X; be nontrivial base
probability spaces. By Dye’s theorem [69], the Bernoulli actions Z —~ XZ and
Z ~ X% are orbit equivalent. By Theorem 3.3.2 their co-induced actions to
I, = F,_1+Z are orbit equivalent. But these co-induced actions are isomorphic
to the Bernoulli actions F,, — XZFF ", O

We used the following easy independence lemma.

Lemma 3.3.4. Let (X,pu) and (Xo, 1o) be standard probability spaces and
let H —~ (Xo,uo) be a measure preserving action. Let I be a countable set.
Consider Z = X x X! with the product probability measure. Assume that F is a
family of measurable maps w : Z — H x I. Write w(z,y) = (w1(z,y),wa(x,y)).
Assume that
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o for almost every z € Z, the map F — I : w — wa(2) is injective,

o for every w € F, the map z — w(z) only depends on the variable Z — X :
(z,y) = x.

Then, {(2,y) = w1(T,Y) *Yuy(a,y) | w € F} is a family of independent identically
(Xo, po)-distributed random wvariables that are independent of (x,y) — x.

Proof. Since the maps w € F only depend on the variable (z,y) — z, we
view w € F as a map from X to H x I. We have to prove that {(z,y) —
W1(Z) Yo (z) | w € F} is a family of independent identically (Xo, p10)-distributed
random variables that are independent of (z,y) — x. But conditioning on
r € X, we get that the variables

Xé - Xo:y— wl(l') “ Yo (x)

are independent and (X, uo)-distributed because the coordinates wa(x), for
w € F, are distinct elements of I and because the action H —~ X is measure
preserving. So the lemma is proven. U

3.4 Stable orbit equivalence of Bernoulli actions

Denote by a,b the standard generators of Fy. Denote by {a) and {b) the
subgroups of Fy generated by a, resp. b. Let (Xo, po) be a standard probability
space and consider the Bernoulli action Fg — ng given by (g - x)n = Tng-

Whenever (X, 110) is a probability space, the Bernoulli action I' ~ X' can be
characterized up to isomorphism as the unique p.m.p. action I' ~ X for which
there exists a factor map 7 : X — Xg such that the maps z — n(g-z), g€ T,
are independent and generate, up to null sets, the whole o-algebra of X.

We prove the stable orbit equivalence of Bernoulli actions as a combination of
the following three lemmas. Fix k € N, k > 2, and denote Xy = {0,...,x — 1}
equipped with the uniform probability measure. Let (Y, n9) be any standard
probability space (that is not reduced to a single atom). Denote by 7 : Fy —
Z/KZ the group morphism determined by r(a) = 0 and r(b) = 1. Identify X,
with Z/kZ and denote by - the action of Z/kZ on X given by addition in Z/kZ.

Lemma 3.4.1. Consider the action Fo —~ X := Xéb>\[F2 given by (9 - x)wyn =

7(9) - Tepyhg- Let Fo —~ Yo[Fz be the Bernoulli action. Then the diagonal action
Fo ~ X x YO[F2 given by g-(z,y) = (g-x,g-y) is orbit equivalent with a Bernoulli
action of Fa.
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Lemma 3.4.2. The action F3 —~ X defined in Lemma 3.4.1 is stably orbit
equivalent with compression constant 1/k with a Bernoulli action of F1.

Lemma 3.4.3. Let I’ —~ (X, u) be any free ergodic p.m.p. action of an infinite
group I'. Assume that k € N and that I' — X s stably orbit equivalent with
compression constant 1/k with a Bernoulli action of some countable group
A. Let (Yy,m0) be any standard probability space and I' —~ Y} the Bernoulli
action. Then also the diagonal action T —~ X x Y is stably orbit equivalent
with compression constant 1/k with a Bernoulli action of A.

Proof of Theorem 3.A

We already deduce Theorem 3.A from the above three lemmas.

Proof of Theorem 3.A. We first prove that Lemmas 3.4.1, 3.4.2, 3.4.3 yield a
Bernoulli action of Fy that is stably orbit equivalent with compression constant
1/k with a Bernoulli action of F;.,. Indeed, by Lemma 3.4.1 a Bernoulli action
of 5 is orbit equivalent with the diagonal action Fo —~ X x YO[FQ. By Lemma
3.4.2, the action Fo —~ X is stably orbit equivalent with compression constant
1/k with a Bernoulli action of Fy,. But then, Lemma 3.4.3 says that the same
holds for the diagonal action Fo ~ X X YO[FZ.

Combined with Corollary 3.3.3 it follows that all Bernoulli actions of Fo are
stably orbit equivalent with all Bernoulli actions of F,,, m > 2, with compression
constant 1/(m — 1). By transitivity of stable orbit equivalence, all Bernoulli
actions of F,, and [F,, are stably orbit equivalent with compression constant
(n—1)/(m—1). O

Proof of Lemma 3.4.1

Proof of Lemma 3.4.1. View Z as the subgroup of Fo generated by b. Let
Z ~ Y¢ be the Bernoulli action. Consider the action Z ~ Xy x Y given
by g - (z,y) = (r(9) - 2,9 -y). Note that Z —~ X, x Y is a free ergodic
p.m.p. action. Using Remark 3.3.1 (statements 1, 2 and 3), one gets that the
action Fo ~ X x Yo[Fz given in the formulation of Lemma 3.4.1 is precisely the
co-induction of Z —~ Xy x Y to Fy. By Dye’s theorem [69], the free ergodic
p.m.p. action Z ~ X x Y is orbit equivalent with a Bernoulli action of Z. By
Remark 3.3.1.1, the co-induction of the latter is a Bernoulli action of Fs. So by
Theorem 3.3.2, the action Fo —~ X x Yo[F2 is orbit equivalent with a Bernoulli
action of Fs. O
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Proof of Lemma 3.4.2

Proof of Lemma 3.4.2. We have X = Xéb>\[F2 and the action Fy —~ X is given
by (9-@)wyn = 7(9) - Tpyng- Write Z = X§ and denote by p : X — Z the factor
map given by p(x),, = Teyan. Denote by - the Bernoulli action Z ~ Z and note
that p(a™-z) =n-p(zx) for all z € X and n € Z.

Define the subsets V;, ¢ = 0,...,k — 1, of Z given by V; := {z € Z | 29 = i}.
Similarly define W; ¢ X given by W; = p~1(V;). Note that W, has measure
1/k. To prove the lemma we define a p.m.p. action of Fy, on Wy such that
Fiis 2 x =Fq -2 n Wy for a.e. x € Wy and such that Fi4,, —~ Wy is a Bernoulli
action.

By Dye’s theorem [69], there exists a Bernoulli action Z ~ Vj such that
Zxz=17Z -znV for a.e. z€ Vy. Denote by n:Z x Vi — Z the corresponding
1-cocycle for the #-action determined by n * z = n(n,z) - z for n € Z and a.e.
z e V.

Since the Bernoulli action Z —~ Z is ergodic and since all the subsets V; ¢ Z have
the same measure, we can choose measure preserving isomorphisms a; : Vo — V;
satisfying «;(z) € Z - z for a.e. z € Z and take ag to be the identity isomorphism.
Let ¢9 : Vo — Z and ¢ : V; — Z be the maps determined by «a;(2) = ¢9(2) - 2
for a.e. z € Vg and o] *(2) = ¢9(2) - z for a.e. z € V;. Define the corresponding
measure preserving isomorphisms 6; : Wy — W; given by 0;(x) = ¢;(z) - z and
Qfl(x) = ¢;(x) - x where p;(x) = a®!(P(@)) and Yi(x) = a¥i(p(@))

Denote by a and b;, i =0, ...,k — 1, the generators of F1,. Define the p.m.p.
action Fy4. A Wy given by

a"wx=a""™P) g and byxax = 075 (b-0;(z)) forall zeW.

Note that the action is well defined: if z € Wy, then 6;(z) € W; and hence
b-0;(x) € W;y1. We use the convention that W, = Wy and 6, = id. Observe
that p(a™ *x) = n = p(x) for all n € Z and a.e. z € Wj.

It remains to prove that Fi,, *x = Fo - x n Wy for a.e. x € Wy and that
F14x — Wy is a Bernoulli action.

Denote by w : F14, x Wy — [ the unique 1-cocycle for the #-action determined
by
w(a", z) = a"(mp(e)
and
w(bi,z) = Yir1(b-0:(x)) bepi(x) .
By construction, the formula g *x = w(g, z) -« holds for all g € {a, by, ...,bx_1}
and a.e. x € Wy. Since w is a 1-cocycle for the action Fy A Wy, the same
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formula holds for all g € F14, and a.e. x € Wy. In particular, F14, * 2 C
Fo-xn Wy for a.e. x € Wy. To prove the converse inclusion we define the inverse
1-cocycle for w.

Define qy : Z — Vp given by qo(2) = a; '(z) when z € V;. Denote by 7’ :
Z x Z — Z the 1-cocycle for the --action determined by go(n-z) = n/(n, z) xqo(z).
Whenever z € V), we have z = go(z) and hence

' (n(n, 2), 2)xz =1 (n(n, 2), 2) £qo(2) = qo(n(n, 2)-2) = qo(n=z) = nxz . (3.5)

Since * is an essentially free action of Z, it follows that n(n(n, 2), z) = n for all
n € Z and a.e. z € V.

Denote by w’ : Fo x X — F1., the unique 1-cocycle for the --action determined
by
W@, z) = a” ") for neZ and ae. z € X,

and
W'(b,x) =b; forae xeW,.

Define ¢ : X — W, given by g(x) = 6; ' (x) when € W;. Note that p(g(x)) =
qo(p(z)) for a.e. x € X. We prove that ¢(g - z) = w’(g,x) = g(x) for all g € Fo
and a.e. x € X. If g = a™ for some n € Z, we know that both ¢(g - ) and
w'(g, ) * q(x) belong to {ay - z. So to prove that they are equal, it suffices to
check that they have the same image under p. The following computation shows
that this is indeed the case.

n

p(q(a" - x)) = qo(p(a™ - x)) = qo(n - p(x)) = 1'(n, p(x)) * qo(p(x)) ,

while

p(w'(a",x)  q(x)) = p(a” ") 4w g(a))
=1'(n, p(x)) * p(a(x)) = 1'(n, p(x)) * qo(p(x)) .

Since by definition of the action * we have that b; = 0; '(z) = 6;(b - 2)
whenever x € W;, the formula w'(g,z) * ¢g(x) = q(g - «) also holds when g = b.
Hence, the same formula holds for all g € F5 and a.e. x € X. In particular,
Fo-xnWyc Fiyk*x for a.e. x € Wy. The converse inclusion was already

proven above. Hence, F1,, 2 = Fo -2 n Wy for a.e. x € W.

Denote by J < Fi4, the union of {e} and all the reduced words that start with
one of the letters b;ﬂ, 1=0,...,k—1. Note that J is a right transversal for
{a) < F14x. It remains to prove that

(Wo—-Vo:xmplgxx)|ge T}



66 . STABLE ORBIT EQUIVALENCE OF BERNOULLI ACTIONS OF FREE GROUPS AND ISOMORPHISM
OF SOME OF THEIR FACTOR ACTIONS

is a family of independent random variables that generate, up to null sets, the
whole o-algebra on Wy. Indeed, we already know that Z ~ Vj is a Bernoulli
action so that it will follow that F., — Wy is the co-induction of a Bernoulli
action, hence a Bernoulli action itself (see Remark 3.3.1.1).

We equip both Fy and Fq4, with a length function. For g € F5 we denote by
lg| the number of letters b*! appearing in the reduced expression of g, while for
g € F14, we denote by |g| the number of letters b;ﬂ, 1 =0,...,k—1, appearing
in the reduced expression of g. By induction on the length of g, one easily checks
that |w(g, z)| < |g| for all g € F14, and a.e. x € Wy, and that |w'(g, z)| < |g| for
allge F5 and a.e. z € X.

We next claim that
W(w(g,z),2) =g forallgeFi . and a.e. x € Wj. (3.6)

Once this claim is proven, it follows that |w(g,z)| = |g| for all g € F14, and
a.e. © € Wy : indeed, the strict inequality |w(g,z)| < |g| would lead to the
contradiction

lg| = |w'(w(g,2),9)| < |w(g,2)| <lg| .
First note that for g = o™ formula (3.6) follows immediately from (3.5). So it

remains to prove (3.6) when g = b;. First observe that w'(¢;(x),z) = e for a.e.
x € Wy. Indeed,

w'(pi(2), @) * 2 = q(pi(z) - ) = q(0i(z)) = =

and since the =#-action of {(a) on Wy is essentially free, it follows that
W'(pi(x),x) = e. Similarly, w'(¢;(x),x) = e for a.e. x € W;. Take z € Wy
and write z’ := bp;(x) - x. Note that 2’ = b 0;(x) and that 2’ € W;14. So,

w'(w(bi, x), x) = W' (iz1(2') bepi(x), )
=W (Pip1(2'),2") W' (b, 0;(2)) ' (@s(x),x) = ebje = b; .

So (3.6) holds for g = a™ and g = b;. Hence (3.6) holds for all g € Fy,,. Note

that (3.6) implies that the action Fy,, -~ W, is essentially free. Indeed, if
gEF1 1w, x € Wyand g=x = z, it follows that w(g, z)-x = x. Since the --action
is essentially free, we conclude that w(g,z) = e. But then by (3.6)

g=uw'(w(g,2),7) =w'(e;x) =e.
Define the subsets C(n) < (b)\F2 given by C(n) := {{b)g | g € Fa, |g| < n}. Also

define J,, :=={g € J | |g| < n}. We prove by induction on n that the following
two statements hold.
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1,. If g€ F14x and |g| < n, then & — w(g, ) only depends on the coordinates
x;, 1 € C(n).

2. The set {Wy — Vo |z — p(g=x) | g € Jn} is a family of independent
random variables that only depend on the coordinates x;, i € C(n).

Since e is the only element in 7 of length 0, statements 1y and 2y are trivial.
Assume that statements 1,, and 2,, hold for a given n.

Any element in Fy4, of length n+1 can be written as a product gh with |g| =1
and |h| = n. By the cocycle equality, we have

w(gh,z) = w(g,h *z)w(h,z) = w(g,w(h,x) - x)wlh,z) .

By statement 1,, we know that the map x — w(g,x) only depends on the
coordinates x;, i € C(1), and that the map x +— w(h, z) only depends on on the
coordinates x;, i € C(n). So, x — w(gh,x) only depends on the coordinates z;,
i € C(n), and the map

= (W(h, ) - 2) gy = 1(W(h, T)) * Tpyhw(h,ey for |k < 1.
Again by statement 1,, these maps only depend on the coordinates x;, i € C(n+1),
so that statement 1,11 is proven.
Define, for i =0,...,k — 1 and € = +1,
jf;’s = {g elFi,x | lg| =n and |big| =n + 1} .

It follows that }
Tns1 = Tn U U b T
i€{0,...,k—1},ee{£1}
Since we assumed that statement 2,, holds, in order to prove statement 2,1, it
suffices to show that

{x s p(bSg*x)|i=0,....,k—1le==+1,ge T}

is a family of independent random variables that only depend on the coordinates
z;, 1€ C(n+ 1), and that are independent of the coordinates x;, i € C(n).

Note that p(big * x) = a; )y (p(b - 0i(g * x))) while p(b; g = x) = a; " (p(b~" -
0i+1(g *x))). The value of p(b-0;(g=x)) at 0 is constantly equal to i + 1, while
the value of p(b=1 - 0;,1(g * z)) at 0 is constantly equal to i. Therefore we have
to prove that

{x—>pb-0i(g*2)m|i=0,....,.s —1,ge Tt meZ—{0}}

ulz = pb™ - 0i1(gx))m |i=0,...,6—1,ge T"",meZ—{0}} (3.7)
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is a family of independent random variables that only depend on the coordinates
z;, 1€ C(n+ 1), and that are independent of the coordinates x;, i € C(n).

Write
K2

s( ) b‘Pz’(g*l‘)w(g,l‘) ife = 1,
wi(g,x) ==
I bl viri(g*z)w(g, ) ife =—1.

The random variables in (3.7) are precisely equal to

{z = r(wi(9,2)) - T@pamws (g,0) |

i=0,...,k—le=+l,ge T meZ—{0}}. (3.8)

So we have to prove that (3.8) is a family of independent random variables that
only depend on the coordinates z;, i € C(n + 1), and that are independent of
the coordinates x;, i € C(n). By statement 1,,, the maps x — w$(g, ), and in
particular « — r(w$ (g, z)), only depend on the coordinates x;, i € C(n). So, we
have to prove that

{z > 2@yamus(ga) [ 1=0,..., s —le=*1l,g€ T meZ—{0}}. (3.9)

is a family of independent random variables that only depend on the coordinates
Z;, 1€ C(n+ 1), and that are independent of the coordinates x;, i € C(n).

We apply Lemma 3.3.4 to the countable set C(n + 1) — C(n) and the direct

product

Xg(n) % Xg(nﬂ)*c(n) )
Since the maps = — wf(g,x) only depend on the coordinates x;, i € C(n), it
remains to check that the cosets (bya™w5 (g, x) belong to C(n + 1) — C(n) and
that they are distinct for fixed x € Wy and varying ¢ € {0,...,k — 1}, e € {£1}
and g € jff.

Note that w(b5g,x) € {ayws(g,z). Hence,
wi (9, 2)] = lw(big, )| = [bigl =n+1

because g € J¢. Since |w(g,z)| = n and |wi(g,z)| = n + 1, it follows from the
defining formula of w$ that the first letter of w$(g,z) must be b°. So the first
letter of a™w$ (g, x), m # 0, is a*!. This implies that (bya™w? (g, ) belongs to
C(n+ 1) —C(n). It also follows that if

(bya™wi(g,x) = (bya™ wi (¢, x)

then we must have m = m’, e = ¢’ and wi (g, ) = WS (¢, x). Assume e = &’ = 1,
the other case being analogous. So,

pilg*xx)w(g,z) = wi(d,z)wlg, x) .
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Applying these elements to z, it follows that 6;(g * x) = 0;(¢’ * x). Since the
ranges of §; and 6, are disjoint for 4 # ', it follows that ¢ = 4’. So, g*x = ¢’ * x.
Since we have seen above that the action Fp. A Wy is essentially free, it
follows that g = ¢'.

We have proven that (3.8) is a family of independent random variables that
only depend on the coordinates z;, i € C(n + 1), and that are independent of
the coordinates x;, i € C(n). So, statement 2,,,1 holds.

To conclude the proof of the lemma, it remains to show that the random
variables x — p(g * ), g € F144, generate up to null sets the whole o-algebra
of Wy. Denote by By the o-algebra on Wy generated by these random variables.
By construction,  — g x is By-measurable for every g € F14,. Since z — p(z)
is By-measurable, the formula

qla™ - x) = a" (P 4 o

shows that x — g(a™ - x) is Bp-measurable for every n € Z. Denote by B; the
smallest o-algebra on X containing By, containing the subsets Wy,... , W,_1 C
X and making g : X — Wy a Bi-measurable map. Note that the restriction of
Bi1 to Wy equals By and that U < X is By-measurable if and only if (U n ;)
is Bp-measurable for every i = 0, ...,k — 1. It therefore suffices to prove that B;
is the whole o-algebra of X. By construction, p : X — Z is Bj-measurable and
by the above, also x — a™ - x is Bi-measurable for every n e Z. If x € W;, we
have that b~z = 0,,"; (b; = 0;(x)) and it follows that = — b+ x is Bj-measurable.
Hence, z — g - x is Bi-measurable for every g € F5. Since p is Bi-measurable, it
follows that @ — x¢,, is Bi-measurable for every g € F2. Hence B is the entire

product o-algebra. O

Proof of Lemma 3.4.3

Proof of Lemma 38.4.3. We denote by a dot - the action of I' on X. Let X; ¢ X
be a subset of measure 1/k. We are given a p.m.p. action A A X, such that
Axxz =T 2n X; for a.e. z € X; and such that A —~ X is isomorphic with
a A-Bernoulli action. This means that we have a probability space U and a
factor map 7 : X7 — U such that the random variables {z — w(A = 2x) | A € A}
are independent, identically distributed and generating the Borel o-algebra of
X1. Denote by w: A x X; — I the 1-cocycle determined by w(A,z) -z = A=z
for all A€ A and a.e. 7 € X;. Put Y =Y and define the action A ~ X; x Y’
given by
A (x,y) = (.U(/\,Q?) ) (x,y) = ()‘ * x?“()‘vx) : y) :
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By construction, A * (x,y) € T'-(z,y) n X1 x Y. But also the converse inclusion
holds. Indeed, if we have v € I', x € X; and y € Y such that v -z € X1, we can
take A € A such that Axx = v-z. Hence w(\,z) = v and also v-(z,y) = A*(x,y).

It remains to prove that A —~ X; x Y is isomorphic with a A-Bernoulli action.

By ergodicity of I' —~ X, choose a partition (up to measure zero) X = X; u
-+ 1 X, with u(X;) = 1/k and choose measurable maps ¢; : X1 — I" such that
the formulae 0;(x) = ¢;(z) -  define measure space isomorphisms 6; : X1 — X;.
Take p1(x) = e for all z € X;. Define the measurable map

p: X1 xY - U x YON : ,O(x,y) = (,/T(x)aytpl(w)a' . ,ygan(x)) .

We prove that p is measure preserving and that the random variables {(x,y) —
p(Ax(x,y)) | A € A} are independent, identically distributed and generating the
Borel g-algebra of X7 x Y.

We first claim that for a.e. x € X3

Fi= (%(A s 2)w(), x)) (3.10)

A€A and i=1,...,k

is an enumeration of I' without repetitions. Observe that
viAx2)wA\z) -z =0;(A=x).

It follows that F -z =T -x. Since I' ~ X is essentially free, it follows that F
enumerates the whole of I". If ¢; (A * 2)w(\, ) = ¢; (N * 2)w(N, z), it follows
that 8;(A#x) = 0;(X # ). For i # j, the sets X; and X are disjoint. So, i = j
and A xz = X\ = z. Being a Bernoulli action of an infinite group, A X s
essentially free and we conclude that A = \'. This proves the claim.

Since for a.e. x € X1 the elements ¢;(x), ..., p.(z) are distinct, it follows from
Lemma 3.3.4 that the random variables (v,y) — 7(z) and (2,y) = Yy, (a)
i =1,...,k, are all independent. Since they are all measure preserving as well,
we conclude that p is measure preserving. Note that

PN (2,9) = (T * 2), Yy ia)w(02)s - - - 5 Yoo Dz)wo(A)) -
It therefore remains to prove that
{(x,y) = 7T()\ * .’13) | A€ A} Y {(a?,y) = Yo, Asz)w(N,x) | A€ Aal =1,.. 'a"{}

is an independent family of random variables that generate, up to null sets, the
Borel g-algebra of X; x Y. The factor map 7 was chosen in such a way that
the random variables {x — 7(\ ) | A € A} are independent and generate, up
to null sets, the Borel g-algebra of X;. So, we must prove that

{(:my) = Yo, (Askz)w(N,z) | AeNi=1,..., H} (3'11)
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forms a family of independent random variables that are independent of (z,y) —
2 and that, together with (z,y) — x, generate up to null sets the Borel o-algebra
of X7 x Y. We apply Lemma 3.3.4 to the countable set I', the direct product
X1 x Y§ and the family of maps X; — ' : 2 — ¢;(\ # 2)w()\, x) indexed by
A€eAi=1,...,k. Since for a.e. z € X7, the set F in (3.10) is an enumeration
of T, it follows from Lemma 3.3.4 that (3.11) is indeed a family of independent
random variables that are moreover independent of (z,y) — x.

Denote by B; the smallest o-algebra on X7 x Y such that the map (z,y) — =
and the random variables in (3.11) are measurable. It remains to prove that,
up to null sets, B; is the Borel g-algebra of X; x Y. So, it remains to prove
that for all g € T', the random variables (z,y) — y, are Bi-measurable. Put
J ={1,...,k} x A and define the Borel map n : J x X; — T’ given by
(i, A, z) == @;(A * 2)w(A, x). Since for a.e. x € Xy, the family F in (3.10) is
an enumeration of I', we can take a Borel map +v : I' x X; — J such that
n(v(g,x),x) = g for all g € T and a.e. z € X;. By the definition of B; and 7,
we know that the map

IxXixY —=Y: (jvxvy)'_)yn(j,ac) (3'12)

is Bi-measurable. Fix g € I. Since (z,y) — z is Bi-measurable, also (z,y) —
(v(g,x),z,y) is Bi-measurable. The composition with the map in (3.12) yields
(x,y) = ygq a.e. So (z,y) +— yg is Bi-measurable. This concludes the proof of
the lemma. O

3.5 Isomorphisms of factors of Bernoulli actions of
free products

Before proving Theorem 3.B, we need the following elementary lemma.

Lemma 3.5.1. Let ', A be countable groups and K a nontrivial second countable
compact group equipped with its normalized Haar measure. Consider the action
(T#A)x K —~ X := K'\'*A where T« A shifts the indices and K acts by diagonal
left translation. The resulting factor action I' * A — X /K is isomorphic with
the co-induced action of A —~ K*/K to T # A.

Proof. Define the factor map p : KT\'*A — KA given by p(x)x = xry. Note
that p is (A x K)-equivariant. Denote X := KT\'*A and denote by z — T
the factor map of X onto X/K. So we get the A-equivariant factor map
p:X/K — KM K :5(Z) = p(z). We prove that T+ A —~ X /K together with p
satisfies the abstract characterization of the co-induced action of A —~ K /K
to I = A.
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For g € T+ A, denote by |g| the number of letters from I'" — {e} appearing in a
reduced expression for g. Define the subsets I,, € T # A given by Iy := {e} and

I,:={geT *A||g| =n and the reduced
expression of g starts with a letter from I' — {e} } .

Note that UZ:O I,, is a right transversal for A < T" * A. So we have to prove
that
{ZT—p(g-T)|neN,gel,} (3.13)

is a family of independent random variables that generate, up to null sets, the
whole o-algebra of X /K.

For ¢ € I'\I' #+ A, we write |i| = n if i = T'g, where |g| = n and the reduced
expression for g starts with a letter from A — {e}. For every A € A — {e}, define
Oy : KAJK — K : 0\(T) = z7'x). Observe that for all g€ I, and A € A — {e},
we have

0A(P(g - T)) = wp, Trag - (3.14)
Since g € I,, starts with a letter from I' — {e}, we have |T'Ag| = |g| = n, while
ITgl =n—1. Write Z,, :== {i e I\I'+ A | |i] < n}. We apply Lemma 3.3.4 to the
countable set Z,, — Z,,_1, the direct product

7 = KIn—l x KIann_l

and the family of maps wg » : Z — K x(Z,—Z,_1), indexed by g € I),, € A—{e},
only depending on the coordinates z;, i € Z,,_1, and given by

Wg a1 T > (mfgl,l")\g) .

Since the elements I'Ag, for g € I),, A € A — {e}, enumerate Z,, — Z,,_1, it follows
from Lemma 3.3.4 that the random variables

{X—)K:xr—mvfglxp)\g|geIn,)\eA—{e}}

are independent, only depend on the coordinates x;, |i| < n, and are independent
of the coordinates z;, |i| < n — 1. In combination with (3.14), it follows that
(3.13) is indeed a family of independent random variables.

Denote by By the smallest o-algebra on X/K for which all the functions
T p(g-T), g€« A, are Bp-measurable. Formula (3.14) and an induction
on n show that 7 — x5} x; is Bo-measurable for every i € T\I' * A with |i| < n.
Hence, By is the entire o-algebra on X /K. O

Theorem 3.B will be an immediate corollary of the following general result.
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Theorem 3.5.2. Let I';, © = 0,1, be countable groups and K a nontrivial
second countable compact group equipped with its normalized Haar measure.
Assume that T'; —~ Kri/K is isomorphic with the Bernoulli action T'; — er
with base space (Y;, p;). Write G :=T¢y #Ty. Then G — K¢/K is isomorphic
with the Bernoulli action G —~ (Yo x Y1)% with base space Yy x Y7.

Proof. Put A := K" and denote by a the action I'y x K ~ A where Iy shifts
the indices and K acts by diagonal left translation. Put B := YOFO x K and

denote by 8 the action I'y x K A B where T'g only acts on the factor Y})FO in a
Bernoulli way and K only acts on the factor K by translation. Our assumptions
say that Ty —~ A/K and Ty —~ B/K are isomorphic actions. We apply Theorem
3.3.2 to these two actions of I'g.

So denote G = I'y * I'; and denote by G —~ A, resp. G —~ B, the co-induced
actions of I'g — A, resp. ['y ~ B, to GG. Note that these actions come together
with natural actions K —~ A and K —~ B that commute with G-actions. By
Theorem 3.3.2, the actions G —~ A/K and G —~ B/K are isomorphic.

We now identify the actions G x K —~ A and G x K —~ B with the following
known actions. First, the action G x K —~ A is canonically isomorphic with
G x K ~ K% where G acts in a Bernoulli way and K acts by diagonal left
translation. Secondly, using Remark 3.3.1.3, the action G x K — B is isomorphic
with the action G x K —~ Y& x KT0\C where G acts diagonally in a Bernoulli
way and K only acts on the second factor by diagonal left translation. In
combination with the previous paragraph, it follows that the action G ~ K% /K
is isomorphic with the diagonal action G —~ Y& x (KT0\¢)/K.

From Lemma 3.5.1, we know that G —~ (K'°\%)/K is isomorphic with the
co-induced action of Ty —~ KT1/K to G. Since we assumed that 'y —~ K /K is
isomorphic with the Bernoulli action T'; ~ Y{'* it follows that G~ (KT0\¢)/K
is isomorphic with the Bernoulli action G —~ Y,®. In combination with the
previous paragraph, it follows that G —~ K¢ /K is isomorphic with the Bernoulli
action G —~ (Y x Y7)%. O

Proof of Theorem 3.B

Proof of Theorem 3.B. Since the action A; ~ K¢ /K arises as the factor of a
Bernoulli action and A; is amenable, it follows from [152] that A; —~ K% /K is
isomorphic with a Bernoulli action A; —~ YzA’ Repeatedly applying Theorem
3.5.2, it follows that I' —~ KT /K is isomorphic with the Bernoulli action
D~ (Y x - x Yl
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The special case I' = F,, is a very easy generalization of [152, Appendix C.(b)].
Denote by o +— T the quotient map from K'» to K'» /K. Denote by ay,...,a,
the free generators of F,,. Define the measurable map

0: K" /K — (K x---x K)f":0(z), = (xg_lxalg,...w;lxang).

We shall prove that 6 is an isomorphism between F,, —~ K'»/K and F,, —~
(K x -+ x K)F». First note that ¢ is indeed [ ,-equivariant. It remains to prove
that

{Ta, wayli=1,...,n, gel,} (3.15)

is a family of independent random variables on K'» /K that generate up to null
sets the whole o-algebra of K= /K. Denote by |g| the word length of an element
g € Fp,. Define for i € {1,...,n}, e = £1 and k € N, the subsets I;’°  F,, given
by 4

L :={gelF,|lgl =k, |aig| =k+1}.

If |g| = k and |a;g| = k — 1, we compose the random variable T +— z, ! 24,4 by
the map K — K : y + y~! and observe that a;g € I,Z’:ll. So we need to prove
that

g Tazgli=1,...n,e=41,keN, ge I} (3.16)

Tz

is a family of independent random variables that generate up to null sets the
whole o-algebra of K¥» /K.

Write Z, = {g € F, | |g| < k} and fix k € N. We apply Lemma 3.3.4 to the
countable set Ty11 — Zy, the direct product

Z = KT x KTe+1 =Tk
and the family of maps w; ¢ 4 : Z = K x (Zy+1 — Zj) indexed by the set
Fi={(ie,9)|i=1,....n, e=+1, ge I}°},
only depending on the coordinates x;, i € 7y, and given by

Wieg @ T (x;l,af ).

Since the elements a$g with (i,¢, g) € F enumerate Z11 — Zy, it follows from
Lemma 3.3.4 that {z — mg_l Tasg |i=1,...,n,e=21, g€ I,i’s} is a family
of independent random variables that are independent of the coordinates xj,,
|h| < k. By construction, these random variables only depend on the coordinates
Zn, |h| < k+ 1. This being proven for all k € N, it follows that (3.16) is a
family of independent random variables. Hence the same is true for (3.15).
These random variables can be easily seen to generate up to null sets the whole
o-algebra of K /K. O
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Appendix: essentially free actions of locally compact
groups

A p.m.p. action of a second countable locally compact group G on a standard
probability space (X, u) is an action of the group G on the set X such that
GxX — X:(g,2) — g-x is a Borel map and such that for all g € G and all
Borel sets A ¢ X, we have u(g- A) = u(A).

For every z € X, we define the subgroup Stabx of G given by Stabx = {g €
G | g+ = z}. For the sake of completeness, we give a proof for the following
folklore lemma.

Lemma 3.5.3. Let G —~ (X, u) be a p.m.p. action of a second countable locally
compact group G on a standard probability space (X, ), as above.

1. The set Xo := {r € X | Stabz = {e} } is a G-invariant Borel subset of X.

2. Assume that u(Xo) = 1 and that G is compact. Denote by m the
normalized Haar measure on G. There exists a standard probability
space (Yp,n) and a bijective Borel isomorphism 0 : G x Yy — X such that
O(gh,y) = g-0(h,y) for all g,h € G, y € Yy, and such that O, (m xn) = p.

A p.m.p. action G —~ (X, ) is called essentially free if the Borel set {z € X |
Stabx = {e}} has measure 1.

Proof. By [220, Theorem 3.2], there exists a continuous action of G on a Polish
space Y and an injective Borel map 9 : X — Y satisfying ¥(g - ) = g - ¥(z)
for all g € G and = € X. Since ¥ is injective, ¥(X) is a Borel subset of ¥ and
1 is a Borel isomorphism of X onto ¥(X) (see e.g. [127, Theorem 15.1]). So,
we actually view X as a G-invariant Borel subset of Y.

To prove 1, fix a sequence of compact subsets K,, € G — {e} such that G — {e} =
Ule K,,. Also fix a metric d on Y that induces the topology on Y. Define

fo: X > R: fo(x) = min d(g -z, z) .
geKn
Whenever F,, C K, is a countable dense subset, we have f,(2) = infycr, d(g-
x, 1), so that f, is Borel. Since Stabx = {e} if and only if f,(x) > 0 for all n,
statement 1 follows.

To prove 2, assume that p(Xo) = 1 and that G is compact. Since G acts
continuously on Y and G is compact, all orbits G -y are closed. By [127,
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Theorem 12.16], we can choose a Borel subset Y7 ¢ Y such that Y1 n G-y is a
singleton for every y € Y. Define Yj := Y7 n Xy. By construction, the map

0:GxYy—Xo:0(g,y) =9y

is Borel, bijective and satisfies 8(gh,y) = g - 0(h,y) for all g,h € G and y € Y.
Then also §~! is Borel (see e.g. [127, Theorem 15.1]). The formula 7y :=
(071« (p) yields a G-invariant probability measure on G x Y. Defining the
probability measure 17 on Y, as the push forward of 7y under the quotient map
(9,y) — vy, the G-invariance of ngy together with the Fubini theorem, imply that
Ny = m X 1. O



Chapter 4

Tensor C*-categories arising
as bimodule categories of 1l
factors

This chapter is based on our joint work with Sébastien Falguiéres [85]. We
prove that if C is a tensor C*-category in a certain class, then there exists
an uncountable family of pairwise non stably isomorphic II; factors (M;)
such that the bimodule category of M, is equivalent to C for all ¢. In
particular, we prove that every finite tensor C*-category is the bimodule
category of a II; factor. As an application we prove the existence of a
II; factor for which the set of indices of finite index irreducible subfactors
is {1, 251319 4 313, 4 + /I3, LT3 13010 1000313 Te/13 ] W also

give the first example of a II; factor M such that Bimod(M) is explicitly
calculated and has an uncountable number of isomorphism classes of irreducible
objects.

4.1 Introduction

The description of symmetries of a II; factor M, such as the fundamental
group F (M) of Murray and von Neumann and the outer automorphism group
Out(M), is a central and usually very hard problem in the theory of II; factors.
Over the last ten years, Sorin Popa developed his deformation-rigidity theory
[164, 166, 167] and settled many long standing open problems in this direction.

7
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See [214, 169, 217] for a survey. In particular, he obtained the first complete
calculations of fundamental groups [164] and outer automorphism groups [117].
His methods were used in further calculations. Without being exhaustive, see
for example [166, 176, 62] concerning fundamental groups and [175, 215, 86] for
outer automorphism groups.

Bimodules p;Hjys over a II; factor M having finite left and right M-dimension
are said to be of finite Jones index (see [53, 160]) and they give rise to a category,
which we denote by Bimod(M). Endowed with the Connes tensor product of
M-M-bimodules, Bimod(M) is a compact tensor C*-category, in the sense of
Longo and Roberts [134].

The bimodule category of a II; factor M may be seen as a generalized symmetry
group of M. It contains a lot of structural information on M and encodes several
other invariants of M. Indeed, if grp(M) denotes the group-like elements in
Bimod(M), i.e. bimodules of index 1, one has the following short exact sequence

1 - Out(M) — grp(M) - F(M) - 1.

Finite index subfactors N < M are also encoded in a certain sense by the
bimodule category Bimod (M), since, denoting N ¢ M < M; the Jones basic
construction, we obtain a finite index bimodule »;L2(Mj)y,.

As explained above, in [117] the first actual computation of the outer
automorphism group of II; factors was achieved, using a combination of relative
property (T) and amalgamated free products. Extending their methods, in [216],
Vaes proved the existence of a I1; factor M with trivial bimodule category. As
a consequence, all the symmetry groups and subfactors of M were trivial. Also
relying on Popa’s methods, in [87], Vaes and the first author proved that the
representation category of any compact second countable group can be realized
as the bimodule category of a II; factor. More precisely, given a compact second
countable group G, there exists a II; factor M and a minimal action G — M
such that, denoting M¢ the fixed point II; factor, the natural fully faithful
tensor functor Rep(G) — Bimod(M %) is an equivalence of tensor C*-categories.
Both papers followed closely [117] and thus, they give only existence results.

Explicit results on the calculation of bimodule categories are obtained in [215]
and [64]. Both articles are based on generalizations of Popa’s seminal papers
[164, 166] on Bernoulli crossed products. In [215], Vaes gave explicit examples of
group-measure space 11 factors M for which the fusion algebra, i.e. isomorphism
classes of finite index bimodules and fusion rules, were calculated. The complete
calculation of the category of bimodules over IT; factors coming from [215] was
obtained by Deprez and Vaes in [64]. Even more is proven in [64], since the
C*-bicategory of II; factors commensurable with M, i.e. those II; factors N
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admitting a finite index N-M-bimodule, is also computed and explicitly arises
as the bicategory associated with a Hecke pair of groups.

Note that by [67], representation categories of compact second countable groups
can be characterized abstractly as symmetric compact tensor C*-categories with
countably many isomorphism classes of irreducible objects. Among compact
tensor C*-categories, finite tensor C*-categories, i.e. those which admit only
finitely many isomorphism classes of irreducible objects, form another natural
class. We prove that every finite tensor C*-category arises as the bimodule
category of a II; factor.

Theorem 4.A. Let C be a finite tensor C*-category. Then there is a II; factor
M such that Bimod(M) ~ C.

As an application of the above theorem, we prove the existence of a II; factor
for which the set of indices of irreducible finite index subfactors can be explicitly
calculated and contains irrationals. Recall the amazing theorem of Jones,
proving that the index of an inclusion of II; factors N — M ranges in the set

2
I={4cos(2) |n=3,4,5,...}u[4,+oo].

Given a II; factor M, Jones defines the invariant
C(M) = {\ | there is a finite index irreducible inclusion N ¢ M of index A} .

Jones proved that every element of Z arises as the index of a not necessarily
irreducible subfactor of the hyperfinite II; factor. However, the problem of
computing C(R) is still widely open. In [215, 216], Vaes proved the existence of
IT; factors M for which C(M) = {1} and C(M) = {n? | n € N}. The invariant
C(M) is also computed in [87] and arises as the set of dimensions of some
finite dimensional von Neumann algebras. In [64], Deprez and Vaes constructed
concrete group-measure space 1I; factors M with C(M) ranging over all sets
of natural numbers that are closed under taking divisors and taking lowest
common multiples.

All above results provide II; factors M for which C(M) is a subset of the natural
numbers. However, combining recent work on tensor categories [103] and our
Theorem 4.A, we prove the following theorem.

Theorem 4.B. There exists a I, factor M such that

C(M) = {1, 5%@ 12 + 3v/13,4 + /13,

11 +3+4/13 13 +3+4/13 19 + 54/13 7+\/13}
2 ’ 2 ’ 2 T2 ’
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In [215], [87] and [64] only categories with at most countably many isomorphism
classes of irreducible objects were obtained as bimodule categories of II; factors.
We give examples of II; factors M such that Bimod(M) can be calculated
and has uncountably many pairwise non isomorphic irreducible objects. For
example, if G is a countable, discrete group, we prove the existence of a II;
factor M such that Bimod(M) ~ URepsn(G). Here, URepa,(G) denotes the
category of finite dimensional representations of G.

Theorem 4.C. Let C denote one of the following compact tensor C*-categories.
FEither C = URepsin(G) for a countable discrete group, or C = UCorepg, (A)
for an amenable or a maximally almost periodic discrete Kac algebra A. Then,
there is a I factor M such that Bimod(M) ~ C.

Our construction consists of two main steps.

1. Given any quasi-regular, depth 2 inclusion N < @ of II; factors, such
that N and N’ n Q are hyperfinite, denote by N < Q < @Q; the Jones
basic construction. We construct a I1; factor M and a fully faithful tensor
C*-functor F : Bimod(Q < Q1) — Bimod(M) (see Section 4.2.4 for the
bimodule category associated with an inclusion of II; factors).

2. Using loana, Peterson and Popa’s rigidity results for amalgamated free
product von Neumann algebras [117], we prove that under suitable
assumptions (see Theorem 4.3.1) the functor F is essentially surjective.

The above steps yield a II; factor M such that Bimod(M) ~ Bimod(Q < Q1).
Using the setting of [117], as in [86, 87, 216], this result is not constructive. We
only prove an existence theorem, which involves a Baire category argument
(see Theorem 4.2.19). More precisely, we prove the following Theorem 4.D and
Theorems 4.A and 4.C are obtained as corollaries.

Theorem 4.D. Let N c Q be a quasi-reqular and depth 2 inclusion of I
factors. Assume that N and N’ n Q are hyperfinite and denote by N C
Q < Q1 the basic construction. Then, there exist uncountably many pairwise
non-stably isomorphic Il factors (M;) such that for alli we have Bimod(M;) ~
Bimod(Q < Q1) as tensor C*-categories.

4.2 Preliminaries and notations

In this chapter, von Neumann algebras are assumed to act on a separable Hilbert
space. A von Neumann algebra (M, 7) endowed with a faithful normal tracial
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state 7 is called a tracial von Neumann algebra. We define I?(M) as the GNS
Hilbert space with respect to 7.

Whenever M is a von Neumann algebra, we write M™ = M,,(C)®M and M* =
B(#(N))®M. Whenever H is a Hilbert space, we also denote H* = £Z(N) ® H.

If B € M is a tracial inclusion of von Neumann algebras, then we denote
by Ep the trace preserving conditional expectation of M onto B. Also if
pB™p < pM™p is an amplification of B < M, we still denote by Eg the trace
preserving conditional expectation onto pB™p.

4.2.1 Finite index bimodules

Let M, N be tracial von Neumann algebras. An M-N-bimodule p,/Hy is a
Hilbert space H equipped with a normal representation of M and a normal
anti-representation of N that commute. Bimodules over von Neumann algebras
were studied in [53, V.Appendix B] and [160].

Let ‘H be an M-N-bimodule. There exists a projection p € N* such that
Hy = (pL*(N)7)y

and this projection p is uniquely defined up to equivalence of projections in
N®*. There also exists a #-homomorphism v : M — pN*p such that p,/Hy is
isomorphic with the M-N-bimodule H(¢) defined as Hilbert space pL?(N)”*
and endowed with actions given by

a-&=v(a)¢ and £-b=¢b and aeM , beN | Eepl?(N)*.

Furthermore, if 1 : M — pN*p and n: M — qN*q, then y,/H(Y)v = pH()N
if and only if there exists u € N* satisfying uu® = p, u*u = ¢ and ¥(a) =
un(a)u* for all a € M.

Note that M-N-bimodules p;H; can also be described by means of right actions
of #-homomorphisms ¢ : N — pM ™ p as

mHN = ((CN)* @L*(M))p)y(w) -

Let H be a right N-module and write Hy = (p LQ(N)%‘)N7 for a projection
p € N*. Denote dim_y(H) = (Tr®7)(p). Observe that the number dim _y(H)
depends on the choice of the trace 7, if V is not a factor.

An M-N-bimodule p/Hy is said to be of finite Jones index if dimps (H) < 400
and dim_y(H) < +o0. In particular, the Jones index of a subfactor N ¢ M
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is defined as [M : N] = dim_y(L?*(M)), see [125]. Using the above notations,
consider a bimodule of the form j,H(v)y with finite Jones index. Then, one
may assume that ¢ is a finite index inclusion ¥ : M — pN™p.

4.2.2 Popa’s intertwining-by-bimodules technique

In [166, Section 2], Popa introduced a very powerful technique to deduce unitary
conjugacy of two von Neumann subalgebras A and B of a tracial von Neumann
algebra M from their embedding A <)y B, using interwining bimodules. When
A, B © M are Cartan subalgebras of a II; factor M, Popa proves [164, Theorem
A.1] that A < B if and only if A and B are actually conjugated by a unitary
in M. We also recall the notion of full embedding A <§\c/[ B of A into B inside
M.

Definition 4.2.1. Let M be a tracial von Neumann and A, B < M™ be possibly
non-unital subalgebras. We write

o« A<y Bifly LQ(M”)lg contains a non-zero A-B-subbimodule I that

satisfies dim_g(K) < co.

« A <{\4 B if Ap <y B for every non-zero projection p€ 14 M"14 n A’.
We will use the following characterization of embedding of subalgebras. It can
be found in [166, Theorem 2.1 and Corollary 2.3] (see also Appendix F in [44]).
Theorem 4.2.2 (See [166]). Let M be a tracial von Neumann algebra and
A, B c M™ possibly non-unital subalgebras. The following are equivalent.

o A<y B,

e there exist m € N, a #-homomorphism ¢ : A — pB™p and a non-zero
partial isometry v € 1A(M1,m(C) ® M”)p satisfying av = vy (a) for all
a€A,

o there is no sequence of unitaries uy € U(A) such that |Ep(zury)|2 — 0
forall x,y e M™.
Note that the entries of v as in in the previous theorem span an A-B-bimodule
K < L2(M™) such that dim_p(K) < 0.

We will make use of Theorem 4.2.4 due to Vaes, [215, Theorem 3.11]. We
first recall the notion of essentially finite index inclusions of II; factors (see
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[215, Proposition A.2]) and embedding of von Neumann subalgebras inside a
bimodule.

Let N € M be an inclusion of tracial von Neumann algebras. We say that
N c M has essentially finite index if there exists a sequence of projections
pn € N’ n M such that p, tends to 1 strongly and Np,, C p,Mp, has finite
Jones index for all n.

Definition 4.2.3. Let M, N be tracial von Neumann algebras and A ¢ M,

B < N von Neumann subalgebras. Let p;Hy be an M-N-bimodule. We write

e A <4 B if H contains a non-zero A-B-subbimodule K < H with
dim_B(/C) < Q0.

« A <L B if every non-zero A-N-subbimodule IC c H satisfies A <x B.
Denote by 7 the trace on M. Let H be an M-N-bimodule. Using notations from
Section 4.2.1, write H = H(¢)) where v is a *-homomorphism ¢ : M — pN*p
and p a projection in N*. Suppose that dim_y(H) < 400, i.e (Tr ®7)(p) < +c0.
Then, as remarked in [215], one has

e A<y Bifand only if ¥(A) <y B,

« A<I Bifand only if (A) <4 B.

Theorem 4.2.4 ([215, Theorem 3.11]). Let N, M be tracial von Neumann
algebras, with trace 7. Let A ¢ M, B < N be von Neumann subalgebras.
Assume the following.

o Every A-A-subbimodule K < L2(M) satisfying dim _4(K) < +oo is
included in L2(A).

e Every B-B-subbimodule K < L2(N) satisfying dim _.g(K) < 4o is
included in L?(B).

Suppose that yHy is a finite index M-N-bimodule such that A <{_L B and
A >{_l B. Then there exists a projection p € B* satisfying (Tr®7)(p) < +o0
and a #-homomorphism v : M — pN*p such that

MMy = yHW) . Y(A) c pB”

and this last inclusion has essentially finite index.



8 ___ TENSOR C*-CATEGORIES ARISING AS BIMODULE CATEGORIES OF Il; FACTORS

4.2.3 Amalgamated free products of tracial von Neumann
algebras

Throughout this section we consider von Neumann algebras My, M7 endowed
with faithful normal tracial states 7g9, 7. Let N be a common von Neumann
subalgebra of My and M; such that the traces 79 and 7 coincide on N. We
denote M = My = M; the amalgamated free product of My and M7 over N with
respect to the trace preserving conditional expectations (see [162] and [226]).
Recall that M is endowed with a conditional expectation £ : M — N and
the pair (M, E) is unique up to E-preserving isomorphism. The von Neumann
algebra My = M, is equipped with a trace defined by T =90 E =70 F.

Rigid subalgebras

Kazhdan’s property (T) was generalized to tracial von Neumann algebras by
Connes and Jones in [56] and is defined as follows. A II; factor M has property
(T) if and only if there exists € > 0 and a finite subset F' — M such that every
M-M-bimodule that has a unit vector £ satisfying ||z — x| < ¢, for all z € F,
actually has a non-zero vector &y satisfying x&, = &g, for all z € M.

Note that a group I' such that every non-trivial conjugacy class is infinite (ICC
group) has property (T) in the sense of Kazhdan if and only if the II; factor
L(T") has property (T) in the sense of Connes and Jones.

Popa defined a notion of relative property (T) for inclusions of tracial von
Neumann algebras, see [164, Definition 4.2]. Such an inclusion is also called
rigid. In particular, if N is a II; factor having property (T), then any inclusion
N c M in a finite von Neumann algebra M is rigid.

We will make use of the following characterization of relative property (T).

Theorem 4.2.5 (See [164] and [157]). An inclusion N < M of tracial von
Neumann algebras is rigid if and only if every sequence () of trace preserving,
completely positive, unital maps ¥, : M — M converging to the identity
pointwise in | |2, converges uniformly in | |2 on the unital ball (N); of N.

We recall Ioana, Peterson and Popa’s Theorem 5.1 from [117] which controls
the position of rigid subalgebras of amalgamated free product von Neumann
algebras. We choose to work with matrices over amalgamated free products,
which is not a more general situation, since (My # M7)™ can be identified with
M s nn M7
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Theorem 4.2.6 (See [117, Theorem 4.3]). Let M = My =n M. Let pe M™
be a projection and @ < pM™p a rigid inclusion. Then there exists i € {0,1}
such that Q <pr M;.

Control of quasi-normalizers

Let M be a tracial von Neumann algebra and N ¢ M a von Neumann subalgebra.
The quasi-normalizer of N inside M, denoted QN,,(N), is defined as the set

of elements a € M for which there exist ay,...,an,b1,...,b, € M such that
n m
Nac ) a;N, ,  aNc ) Nb.
i=1 i=1

The inclusion N ¢ M is called quasi-regular if QN,;(N)" = M. One also
defines the group of normalizing unitaries Ny(M) of N ¢ M as the set of
unitaries u € M satisfying uNu* = N. The normalizer of N in M is Ny (N)”".
Note that N’ n M < Ny (N)” < QN (N)".

Theorem 4.2.7 (See [117, Theorem 1.1]). Let M = My =y M;y. Let p € M
be a projection and Q) < pM{'p a von Neumann subalgebra satisfying (Q ¥, N.
Whenever K < p(C" ® L2(M)) is a Q-My-subbimodule with dim _y, (K) < 400,
we have K < p(C" ® L2(My)). In particular, the quasi-normalizer of Q inside
pM™p is contained in pM{'p.

4.2.4 Tensor C*-categories, fusion algebras and bimodule
categories of Il; factors

We briefly recall some definitions for tensor C*-categories and refer to [134,
189] for more information and precise statements. A tensor C*-category is a
C*-category with a monoidal structure, such that all structure maps are unitary.
A tensor C*-category is called regular if it has subobjects and direct sums and
the unit object is strongly irreducible. A regular tensor C*-category is called
compact if every object has a conjugate. A compact tensor C*-category is finite
if it has only finitely many isomorphism classes of simple objects.

Convention. Throughout this chapter we assume without loss of generality
that all tensor categories involved are strict.

Fusion algebras

A fusion algebra A is a free N-module N[G] equipped with
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e an associative and distributive product operation, and a multiplicative
unit element e € G,

o an additive, anti-multiplicative, involutive map x — Z, called conjugation,

satisfying Frobenius reciprocity as follows. For z,y, z € G, define m(z,y;z) € N
such that

Ty = Zm(x, Y;2)z .
z

Then, one has m(x,y; z) = m(Z, z;y) = m(z,7;z) for all x,y,2 € G.

The base G of the fusion algebra A, also called the irreducible elements of A,
consists of the non-zero elements of A that cannot be expressed as the sum of
two non-zero elements.

We have the following examples of fusion algebras.

« Given a countable group I, one gets the associated fusion algebra A =
N[T].

e Let G be a locally compact group and define the fusion algebra A of
URepsin(G) as the set of equivalence classes of finite dimensional unitary
representations of G. The direct sum and tensor product of representations
in URepsn, (G) yield a fusion algebra structure on A.

e More generally, the isomorphism classes of objects in a compact tensor
C*-category form a fusion algebra. Note that there exist non-equivalent
tensor C*-categories having isomorphic fusion algebras.

We are mainly interested in tensor C*-categories and fusion algebras coming
from bimodules over II; factors. Let us recall some definitions and refer to
[36] for background material and results on bimodules and fusion algebras, in
particular in relation with subfactors.

The bimodule category of a Il; factor

Let M, N, P be II; factors. We denote by H @y K the Connes tensor product
of the M-N-bimodule H and the N-P-bimodule K and refer to [53, V.Appendix
B] for details. Note that H(p) @n H(¢) = H((id ® ¢)p).

We recall now the following useful lemma from [87] concerning Connes tensor
product versus product in a given module. The inclusion of II; factors N ¢ M
considered in [87] is assumed to be irreducible (N* n M = C1). Instead, we
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assume that N ¢ M is quasi-regular. We give a proof for the convenience of
the reader.

Lemma 4.2.8 ([87, Lemma 2.2]). Let N € N © M be an inclusion of II
factors and let P be a I, factor. Assume that N ¢ M is quasi-regular and
N © N has finite index. Let yyHp be an M-P-bimodule. Suppose that L ¢ H
is a closed N-P-subbimodule. Suppose that K < L2(M) is an N-N -subbimodule
of finite index. Denote by KC - L the closure of (I n M)L inside H. Then

o K- L is an N-P-bimodule isomorphic to a subbimodule of K @z L.

o If K- L is non-zero and K @z L is irreducible then, K- L and K @z L
are isomorphic N-P-bimodules.

Whenever pHyy is a P-M-bimodule with closed P-N -subbimodule £ and K <
[2(M) an N-N -subbimodule, we define L - K as the closure of LK n M) inside
H and, by symmetry, we find that L - IC is isomorphic with a P-N -subbimodule
of L&ON K.

Proof. Let H,K and £ be as in the statement of the lemma. Note that X n M
is dense in K, since N < M is quasi-regular and N < N has finite index.
Moreover, all vectors in K n M are N-bounded. So, there exists a finite
index inclusion ¢ : N — pN"p and an N-N-bimodular isomorphism T' :
H() = p(C* ®IA(N)) — K such that T'(p(e; ® 1)) € K n M for all i. We
have K ®3 £ = p(C" ® L), hence we can define an N-P-bimodular map
S:p(C"®L) - K-L by S(ple; ®E)) = T(p(e; ®1)) - . The range of T is
dense in K - L. After taking the polar decomposition of T' we get a coisometry

K@y L—-K-L. O

The contragredient of an M-N-bimodule p;Hy is the N-M-bimodule defined

on the conjugate Hilbert space H with bimodule actions given by a - & = (£a*)
and £ - b = (b*§).

The Connes tensor product and contragredience induce a compact tensor
C*-category structure on the category of finite index M-M bimodules, where
morphisms are given by bimodular maps.

Definition 4.2.9. Let M be a II; factor. We define Bimod(M) to be the
tensor C*-category of finite index M-M-bimodules and Falg(M) the associated
fusion algebra.

We recall the notion of pairs of conjugates in strict tensor C*-categories.
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Definition 4.2.10 (See [134]). Let x be an object in a strict tensor C*-category
C. A conjugate for z is an object T in C and morphisms R : 1¢ - T®z,
R:1¢ — x®7 such that

(R* ®id,) o (id, @ R) = id, and (R* ®ids)o (idz @ R) = idz.

In the following theorem, pairs of conjugates are used to characterize finite
index bimodules among all bimodules over a II; factor (see [134] and also [84,
Theorem 5.32]).

Theorem 4.2.11. Let M be a II; factor and let r;Hy an M-M-bimodule.
Then rHas has finite index if and only if yyHyr has a conjugate in the tensor
C*-category of all M-M -bimodules.

Tensor C*-categories arising from subfactors

Let M be a II; factor and N € M a subfactor. Write ey for the projection
L2(M) — L2(N). The von Neumann algebra (M, ey c B(L?(M)) generated
by M and ey, called the Jones basic construction, was introduced in [125]
and is denoted M;. Note that L?(M;) is an M-M-bimodule and it is of finite
Jones index whenever [M : N] < +00. We will frequently use the fact that
dim(N' n M) < 40 if [M : N] < +c0.

Definition 4.2.12. Let N c M be an inclusion of type II; factors. We define
Bimod(N c M) to be the tensor C*-subcategory of Bimod(N) generated by all
finite index N-N-bimodules that appear in L*(M). We denote by Falg(N < M)
the associated fusion subalgebra of Bimod(N < M).

We give the following definition of depth 2, as in [80].

Definition 4.2.13. Let N < @ be an inclusion of II; factors. Let N c
Q c @1 € Q2 < --- be the Jones tower. Then N < @ has depth 2 if
N' nQc N nQy c N' n Qs is a basic construction.

Identify N’ n Q2 with the space By_q(I?(Q1, Tr)) of bounded N-Q-bimodular
maps. Denote by Hompy_g(I?(Q),[*(Q1)) the Hilbert space completion of
N-Q-bimodular maps from I1?(Q,7) to I?(Q1, Tr) with respect to the scalar
product (T, Sy = 7(S*T). We recall the following special case of [80, Theorem
3.10).

Theorem 4.2.14 (See [80, Theorem 3.10]). The inclusion N < Q of
I, factors has depth 2 if and only if the natural action of N' n Q2 on

Homy ¢ (I*(Q),12(Q1)) is faithful.
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As a consequence, we obtain the following characterization of depth 2 inclusions
that we use in this chapter.

Corollary 4.2.15. Let N,Q be I, factors. Then, the inclusion N c @

has depth 2 if and only if NI?(Q1)q is isomorphic to an N-Q-subbimodule of
12(Q)%q.

N Q

Proof. Let N c () be a depth 2 inclusion of II; factors. Let p € N’ n Q2 be the
projection onto the orthogonal complement of the maximal N-Q-subbimodule
of I?(Q1) which is contained in NI?(Q)*g. Then, p acts trivially on
Hompy_g(I*(Q),1*(Q1)). Therefore, p = 0 by Theorem 4.2.14.

Assume that yI?(Q1)g is isomorphic to a subbimodule of NI?(Q)”q. Let
p € N'nQ3 be a non-zero projection. Then pI?(Q;) is a non-zero N-Q-bimodule,
so there is a non-trivial N-Q-bimodular map T : I?(Q) — pl*(Q1). We have
p-T =T # 0, so p acts non-trivially on Homy_q(I*(Q),1*(Q1)). We have
proven that N’ n Qs acts faithfully on Homy_o(I#(Q),1?(Q1)). We conclude
using again Theorem 4.2.14. O

The fusion algebra of almost-normalizing bimodules

Let N ¢ M be a regular inclusion, i.e. ANy (N)” = M. For any element
u € Ny (N) the N-N-bimodule ul?(N) has finite index and lies in I?(M).
Such bimodules are generalized by the notion of bimodules almost-normalizing
the inclusion N ¢ M, which was introduced by Vaes in [216]. This notion
was adapted to more general irreducible, quasi-regular inclusions of II; factors
N c M in [87]. We recall the definition.

Definition 4.2.16. Let N c M be an irreducible and quasi-regular inclusion
of type I1; factors. A finite index N-N-bimodule is said to almost-normalize the
inclusion N < M, inside Falg(V), if it arises as a finite index N-N-subbimodule
of a finite index M-M-bimodule. We denote by AFalg(N c M) the fusion
algebra generated by N-N-bimodules almost-normalizing the inclusion N ¢ M.

Let N be a II; factor and I' a countable group acting outerly on N. Write
M = N xI' and assume that the inclusion N ¢ N x I' is rigid. It is proven
in [216, Lemma 4.1] that the fusion algebra AFalg(N c N x T') is a countable
fusion subalgebra of Falg(N). The next lemma is a straightforward adaptation
of [216, Lemma 4.1].

Lemma 4.2.17. Let N € M be a rigid, irreducible and quasi-reqular inclusion
of type II, factors. Then, the fusion algebra AFalg(N < M) is a countable
fusion subalgebra of Falg(N).
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Freeness of fusion algebras

The notion of freeness of fusion algebras was introduced in [37, Section 1.2], in
the study of free composition of subfactors. We recall the definition.

Definition 4.2.18 ([37, Section 1.2]). Let A be a fusion algebra and A, A; < A
fusion subalgebras. We say that Ay and A; are free inside A if every alternating
product of irreducibles in A;\{e}, remains irreducible and different from e.

Let M be a II; factor and ,//Cy; a finite index M-M-bimodule. Whenever
a € Aut(M), we define the conjugation of K by « as the bimodule K¢ =
H(a™) @ K ®ar H(a). Denote by R the hyperfinite II; factor. Vaes proved
in [216, Theorem 5.1] that countable fusion subalgebras of Falg(R) can be made
free by conjugating one of them with an automorphism of R (see Theorem
4.2.19 below). Note that the same result has first been proven for countable
subgroups of Out(R) in [117]. In both cases, the key ingredients come from
163].

Theorem 4.2.19 ([216, Theorem 5.1]). Let R be the hyperfinite IT; factor and
Ao, A1 two countable fusion subalgebras of Falg(R). Then,

{a € Aut(R) | Ay and Ay are free}

is a dense Gs-subset of Aut(R).

4.3 Proof of Theorem 4.D

We recall the following construction, from [87]. Consider the group I' =
Q® ® Q3 x SL3(Q), defined by the action A - (x,y) = (Ax, (A*)"1y) of SL3(Q)
on Q°® Q3. Take a € R — Q, define 2, € Z2(Q* ® Q3, S') such that

Qo ((xv y)’ (JJ’, yl)) = €xp (27”.0‘«'1:’ y/> - <y7 $/>)) )

for all (z,y),(z',y) e Q®@Q?,

and extend €, to an S'-valued 2-cocycle on I' by SL3(Q)-invariance. Write
A =7Z3®7Z3. Then, by [87, Lemma 3.3] and [87, Example 3.4], the inclusions
N c Ny c P given by

N =Lq,(A), Ny=Lq (Z*@®7Z? xSL3(Z)), P =Lq,(T)

satisfy the following properties.
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(P1) N c P is irreducible and quasi-regular,
(P2) No c P is quasi-regular,
(P3) Ny has property (7).
Note that (P;) follows from the fact that the inclusion A c T is almost-normal,
meaning the commensurator Commp(A) defined as
Commyr(A) := {geT' | gAg~ ' n A has finite index in gAg 'and in A}

is the whole of T'. We know that the group SL3(Q) does not have any non-trivial
finite dimensional unitary representations (see [229]). The smallest normal
subgroup of I' containing SL3(Q) is T itself. This gives the following property.

(P4) The group I' has no non-trivial finite dimensional unitary representations.
We will also need the following additional property, proven in [87, Example 3.4].

(P5) The inclusion Lq_ (Ag) € Lg(T") is irreducible, for every finite index
subgroup Ag < A.

Theorem 4.3.1. Let Q be a II; factor such that N c Q. Let B = N'nQ and
assume that

N c Q is a quasi-regular and depth 2 inclusion,

B is hyperfinite,

there is no non-trivial -homomorphism from Ny to any amplification of

Q,

the fusion algebras AFalg(N < P) and Falg(N < Q) defined in Section
4.2.4 are free inside Falg(N).

Then, for M = (P®B) #ngp Q, we have that Bimod(M) ~ Bimod(Q < Q1),
as tensor C*-categories, where N € Q < Q1 is the basic construction.

Outline of the proof of Theorem 4.D. We first prove Theorem 4.3.1 in
two steps. In Section 4.3.1, we construct a fully faithful tensor C*-functor
F : Bimod(Q < Q1) — Bimod(M). In Section 4.3.2, we prove that F is
essentially surjective, which completes the proof of Theorem 4.3.1. In Section
4.3.3, we give a proof of Theorem 4.D, relying on Theorem 4.3.1.

In the rest of Section 4.3 will always use the notation of Theorem 4.3.1.
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4.3.1 A fully faithful functor F' : Bimod(Q < Q1) — Bimod(M)

Denote by C the tensor C*-category whose objects are finite index inclusions
¥ Q — pQ*p with p e B*, (Tr®7)(p) < 00 and ¢(x) = xp for all z € N. The
tensor product on C is given by ¢ ®c 12 = (id ® ¥2) 0 1p1. Morphisms of C are
given by

Home (¢1,%2) = {T € ¢B*p|Vz € Q : Ty1(x) = o(x)T}.

Proposition 4.3.2. The natural inclusion I : ¥ — H () of C into Bimod(Q)
defines an equivalence of tensor C*-categories C ~ Bimod(Q < Q).

Proof. 1t is easy to check that I is a faithful tensor C*-functor. We prove that
I is full and that its essential range is Bimod(Q < Q7).

We first prove that I is full. Let T : pI?(Q)* — qI?(Q)* be a Q-Q-bimodular
map between H (1) and H(1)2). Then T € pQ™q, since T is right Q-modular.
We have Tap = zqT for all x € N, so it follows that T' € pB*q. This proves
that I is full.

Let us prove that the image of I is contained in Bimod(Q < @1). Take a finite
index inclusion ¢ : Q — pQ*p with p € B*, (Tr®7)(p) < o and ¥ (z) = xp
for all x € N and let H = H(y)). We claim that H is a @Q-Q-subbimodule of
L2(Q1)*. Extend ¢ to a map L%(Q) — L2(pQ™p) and note that its entries,
considered as operators on L2(Q), lie in Q1. Any non-zero column of v defines
a partial isometry v € p(M,x1(C)®Q1) satisfying vz = ¥(z)v, for all z € Q.
Note that vo* € ¥(Q) N pQYp. If p # vv*, then we may apply the previous
procedure to the non-zero Q-Q-bimodule (p — vv*) - H = H(Y(-)(p — vv*)).
Take a maximal family of non-zero partial isometries v; inside p(My x1(C)®Q1)
satisfying ¢ (z)v; = v;z for all x € @ and such that v;v} are pairwise distinct
orthogonal projections. Consider the projection r =p — > v;vf. If  # 0 then
we can apply the previous procedure to the non-zero bimodule r - H. As above,
we get a non-zero partial isometry w € (M x1 (C)®Q1) such that 1 (z)w = wz,
for all x € . Then, ww* is orthogonal to all of the v;v}, which contradicts
maximality of the family. So, p = > v;vf. Putting all these partial isometries
in a row, we get an element u € p(Q1)* such that ux = ¥ (z)u, for all x € Q
and wu* = Y, v;v} = p. This proves our claim.

We now prove that every bimodule H of Bimod(Q < Qi) is contained in
the essential range of I. Assume that H arises as a Q-Q-subbimodule of
[2(Q,)®<%, for some k € N. We prove that H is a subbimodule of I2(Q;)*.
By Corollary 4.2.15, we have that H is isomorphic, as N-Q-bimodule, to a
subbimodule of L*(Q)*. Writing H = H(1)), for some finite index inclusion
P Q — qQ"q, we find a non-zero N-central vector v € ¢(M,x1(C) ® I?(Q)).
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Taking polar decomposition, we may assume that v € ¢(M,,x1(C) ® Q) is a
partial isometry satisfying ¥ (z)v = vz, for all x € N. As a consequence, we
have v*v € B. As in the previous paragraph, take a maximal family of non-zero
partial isometries v; inside ¢(M, x1(C) ® Q) satisfying ¢ (z)v; = v,z for all x € N
and ¢ = Y v;v}. Putting all partial isometries v; in one row, we get an element
u € ¢(My, xo0 (C)®Q) such that ¢(z)u = ux for all x € N and wu* = Y vvf =g.
Define p = u*u and note that p € B*. Conjugating with «* from the beginning
yields a map ¥ : @ — pQ*p such that ¢¥(z) = pz, for all z € N and still
satisfying H = H (). O

Take a finite index inclusion ¢ : @ — pQ® p in C. Then, we have p € B*.
Denote by ¢ : P®B — p(P®B)%*p the inclusion map given by x — xp on P and
by the restriction |5 on B. Since 1 preserves N, it also preserves B = N' n Q
and we obtain a map ¢ : M — pM™p. If T € Home (1, 2), then T € ¢B*p.
So, T' defines an M-M-modular map from H(e # 11) to H(e * 1p2). We conclude
that the map

Fy : C — Bimod(M) : ¢ — H(L = 1)

is a functor.

Proposition 4.3.3. Fy is a fully faithful tensor C*-functor.

Proof. 1t is clear that F{ is faithful. We first prove that F is full. Take
T € Homps pr (H(e # 91), H(e # 1)). Then T : pI?(M)* — qI?(M)™ is right
M-modular, hence T' € pM*q. Since Txp = xqT for all x € P, we have T €
pB*q. So T is in the image of Fy. The functor * on both Bimod(Q < Q1) and
Bimod(M) is given by T + T*, so F is a C*-functor. Since H (1) @nr H(1)2) =
H((id ® 1) 0 91), it follows immediately that Fj is a tensor C*-functor. [

Now let G : Bimod(Q < Q1) — C be an inverse functor for the inclusion
I : C — Bimod(Q < Q). We define the fully faithful tensor C*-functor
F = Fy oG : Bimod(Q < Q1) — Bimod(M).

4.3.2 Proof of Theorem 4.3.1: essential surjectivity of F

We give a series of preliminary lemmas before proving that the functor F
constructed in the previous section is essentially surjective.

Lemma 4.3.4. Let pyHy be a finite index M-M -bimodule and pgpKpgp C
reeHree be a finite index PQB-PRB-subbimodule. Then K contains a
non-zero N -N -subbimodule £ such that dim n (L) < 400.
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Proof. Let : M — pM"™pand ¢ : P@B — q(P®B)*q be finite index inclusions
such that yHy = pH(W)u and pgeKegs = peeM(v)pgs. Take a non-zero
partial isometry vy € p(M, x(C) ® M)q such that ¢ (z)vg = vop(x), for all
r € PRB. We have vfvy € ¢(P ® B) n ¢M¥q, so the support projection
supp E pgp (v vo) lies in o(P®B)' n q(P®B)*q. Moreover v pgp(vivo) = vo.
So we can assume that g = supp E pg 5 (vgvo).

We claim that ¢(Ng) < pgp - Recall that B is hyperfinite, by assumption. Let
UJ,, An be the dense union of an increasing sequence of finite dimensional von
Neumann subalgebras A,, of B. Since P®1 c P® A, is a finite index inclusion
for every n, it suffices to show that ¢(No) <pgp P ® A, for some n. Denote
by E, the trace-preserving conditional expectation of B onto A,. Then the
sequence of unital completely positive maps id ® E,, on (P®B)*, still denoted
by E,, converges pointwise in | |2 to the identity. Since Ny has property
(T) (see (P3)), Theorem 4.2.5 shows that (E,) converges uniformly in | |2 on
(¢(No))1. Take n € N such that |E,(z) — x|z < 1/2 for all x € ¢(Ny). Assume
that ¢(Np) {pgp P ® Apn. By Theorem 5.6.1, there is a sequence of unitaries
uy, € U(p(Np)) such that for all z,y € g(PRB)*q, we have |E, (zugy)|s — 0 for
k — oo. In particular,

1= uglz2 <1/2 4+ [En(ug)l2 — 1/2,
which is a contradiction. We have proved our claim.

This yields a #-homomorphism 7 : Ny — 7P and a non-zero partial isometry
v1 € ¢(My,;1(C) ® P®B)r such that ¢(z)vy = vim(z), for all x € Ny. Similarly
to the first paragraph, we can assume that r = supp Ep(vivi). Note that
Epgp(vivo) = ¢. So v = vov1 € p(M,; ® M)r is a non-zero partial isometry.
Moreover, we have vr(x) = ¥ (z)v, for all € Ny.

We claim that 7(N) <p N. We first prove that it suffices to show that
T(N) <pgp N®B. Indeed, if this the case, we get a #-homomorphism
0 : N — t(N®B)’t and a non-zero partial isometry u € r(M; ;(C) ® PR®B)t
such that 7(x)u = uf(z), for all x € N. Denote by u; the i-th column of
u. Then the closed linear span of {u;N®B|i = 1,...,j} defines a non-zero
7(N)-N®B-subbimodule of r(C'®I?(P®B)) with finite right dimension. Using
the N-N-modular projection onto r(C! ® I?(P)) and the action of B, we find a
non-zero 7(N)-N-bimodule inside 7(C' ® [2(P)) which is finitely generated as
a right N-module.

Assume now that m(N) {pgp N®B. Then, Theorem 4.2.7 implies that the
quasi-normalizer of 7(N) in rM'r sits inside r(P®B)!r. As a consequence,
v*v e m(N) nrMlr c r(P®B)!r. Since the inclusion N ¢ M is quasi-regular,
we have that

v*i(M)v c r(PRB)'r . (4.1)
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Denote by A the von Neumann algebra generated by ¢(M) and vv*. Then
Y(M)c Ac pM™ and A c pM"p has finite index. Using (4.1), we get that
v¥Av < v*v(P@B)lv*v c v*M"™v, from which we deduce that PRB < M
has finite index. We get a contradiction. Indeed, M being an amalgamated
free product, we can find in I[*(M) infinitely many pairwise orthogonal
P®B-P®B-bimodules by means of alternating powers of I?(P®B) ©1?(N®B)
and [?(Q) © I?(N®B).

The previous claim yields a *-homomorphism p: N — sN™s and a non-zero
partial isometry w € r(M;,,(C) ® P)s such that n(z)w = wp(x) for all
x € N. Denote by w; the i-th column of w. Define £ as the closed linear
span of {viw;N |i=1,...,m}. Then, L is a non-zero, since Ep(w*vfviw) =
w*Ep(viv)w and r = supp Ep(vivy). So L is a non-zero ¢(N)-N-subbimodule
of KC with finite right dimension. O

Lemma 4.3.5. Let K be a finite index PRQB-P®B-subbimodule of a finite
index M-M-bimodule H and let vLn < Ky be an irreducible finite index
N-N-subbimodule. Then Ly is isomorphic to a subbimodule of NI?(P)y.

Proof. Assume, by contradiction, that £ is not contained in yI?(P)y. Take
some non-trivial finite index irreducible N-N-bimodule £% in I?(Q) and some
non-trivial finite index irreducible N-N-bimodule £7 in I2(P) both with right
dimension greater than or equal to 1. Denote by X, the | ||2-closure of £ - M.
Lemma 4.2.8 implies that X} is a non-zero N-M-bimodule which is isomorphic
to a subbimodule of H and lies in £ ®y L?M. Define the N-M-bimodules

X = (LY ®n LO)®" QN Xp .

Note that £ € AFalg(N c P). By assumption, the fusion algebras Falg(N c
Q) and AFalg(N < P) are free inside Falg(NN). Therefore, as in [87], the
X, follow pairwise disjoint as IN-N-bimodules and hence pairwise disjoint as
N-M-bimodules.

Decompose &y € H is a direct sum of irreducible N-N-bimodules );. Write
(L2 = L2 A Q and (LF)? = LP A P. Then, (£F)° - (£L2)?--- (L) .Y is

non-zero. If not, we had
M-yi-M=M-(LP)O-(EQ)O---(EQ)O-N-M-M=0,

contradicting the fact that M is a factor. As above, the freeness assumption
implies that (£F ®@x L2)®" @y ); is irreducible. Then, by Lemma 4.2.8, we
have that (LF @x L2)®" @y Y sits inside H as the || - |2-closure of (LF)0 .
(£9)0---(£2)"-Y;. We have proven that H contains a copy of each X;,.

Note that dim_ps(X,) > dim_p (Xp). As a consequence, H, as a right
M-module, has infinite dimension, which is a contradiction. O
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Lemma 4.3.6. Let H be a finite index M-M -bimodule and K a finite index
P®B-PRB-subbimodule. Then, K is isomorphic to a multiple of the trivial
P-P bimodule.

Proof. By Lemma 4.3.4, we have a non-zero N-N-subbimodule £ < K with
finite right dimension. Then, for z,y € QNP@B(N), the closure of Nz - L -yN
is still an N-N-subbimodule of I with finite right dimension. Since N ¢ PQB
is quasi-regular, the linear span of all N-N-subbimodules of K with finite right
dimension is dense in K. Then, a maximality argument shows that K can be
decomposed as the direct sum N-N-subbimodules with finite right dimension.
By symmetry, X decomposes as the direct sum of N-N-bimodules with finite
left dimension. As a consequence, K may be written as the direct sum of finite
index N-N-subbimodules.

Let £ be an irreducible finite index N-N-subbimodule of K. Lemma 4.3.5 shows
that £ is contained in I?(P). Remember that

P=Lo(@@®Q*xSL3(Q) , N=Lo(Z’°@Z7%.

Hence, £ arises as the | - [o-closure of Nu,N for some element g € Q3 ® Q?® x
SL3(Q). By almost-normality (see property (P;1) and the remarks following
it), take a finite index subgroup Ay of Z3 @ Z? such that Ad(g)(Ao) < Z° ®
Z3. Denote by Ly the closure of NuyLo(Ag). Then, Ly is an irreducible
N-Lq(Ag)-subbimodule of £. Note that

Lo ® Lao(Ag)uiN = I*(N).
Lao(Ao)

Lemma 4.2.8 implies that K contains a copy of the trivial N-N-bimodule L?(N),
realized as the || - [[2-closure of Louj N.

Write K =~ H(v)) for some finite index inclusion 9 : PRQB — ¢(P®B)*q, where
(Tr®7)(q) < 0. By the above paragraph, we can take a trivial N-N-bimodule
inside . Then, there is an N-central vector v € qI?(P®B)*. Taking polar
decomposition, we may assume that v is a partial isometry in ¢(My «x1 (C)®P®B)
satisfying ¥ (z)v = vz, for all x € N. Note that vv* € p(N) n q(PRB)*q.
Hence, (¢ — vv*) - K defines a N-P®DB-subbimodule of £ and we may apply
the previous procedure. As in the proof of Proposition 4.3.2, a maximality
argument yields a family of partial isometries v; € ¢(Mqyx1(C)QPRB) satisfying
Y(x)v; = vz, for all z € N and such that > v;uf = ¢. Putting these partial
isometries in a row, we obtain an element w € q(P®B)* satisfying ww* =
Y wvF = g. By irreducibility of N = P (see (Py)), we have a projection
p=w*we (N n PRB)* = B*. Conjugating ¢ with w* from the beginning,
we obtain a finite index inclusion ¢ : PQB — p(P®B)”™p, where p € B* such
that (Tr®7)(p) < 00 and ¥ (x) = xp for all x € N and still satisfying IC =~ H ().
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Let ge ' = Q@ Q3 x SL3(Q) and Ag < Z3 ® Z3 be finite index subgroup such
that Ad(g~")(A¢) < A. Denote by ay—1 the *-homomorphism Lo (Ag) — Lo (A)
induced by Ad(g~!). For z € Lo(Ag) we have

¢(ug)u;x = z/}(ug)ozgq(x)u; = w(ug)w(agfl(:c))u;‘ = :m/)(ug)u;‘ .

By (P5), we have that Lo(Ag) < P is irreducible. As a consequence, v, =
Y(ug)ul € U(pB*p). Note that ¢(B) < ¥(N)" n p(PR®B)*p = pB*p and
vg € Y(B)' n pB”p.

We prove that the inclusion ¢¥(B) < pB*p has finite index using Theorem
4.2.11. Consider the conjugate bimodule K of reBKpgp. As proven above, we
may write K = H (1)), where ¢ : P®B — q(P®B)*q is a finite index inclusion
satisfying ¢(x) = xq, for all x € N and ¢ € B” is a projection such that
(Tr®7)(q) < . Note that K @pgp K = H((¢ ®id) 01)). Hence there is a
conjugate map R : [?(P®B) — H((v ®id) o 1)). Considering R as an element
of (p®q)(M1(C) ® PRB) we have

Re(p®q)(M,1(C)® PRB) n N' = (p® q) (M1 (C)®B) .

Define 95 : B — pB*p and ¢ 5 : B — ¢B*q as the restrictions of ¢ and v to
B and S : I?(B) — H((15 ®id) o ¥g) as the restriction of R. Similarly, we
find an intertwiner S : [2(B) — H((¢¥p ®id) o 1), giving a pair of conjugate
morphisms for H(¢p). Then the same argument as in [134, Lemma 3.2] implies
that ¥(B)" n pB%p is of finite type L

It follows that g — v, € ¥(B)" n pB*p is a direct integral of finite dimensional
unitary representations of I and hence trivial, since I' has no non-trivial finite
dimensional unitary representations (see (P4)). We conclude that ¥(uy) = ugp
and that pKp is a multiple of the trivial P-P-bimodule. O

Lemma 4.3.7. Let 1 : PRQB — p(P®B)"p be a finite index inclusion such
that

wPre1)(P(C"@L*(P®B)))p a1

is a multiple of the trivial P-P-bimodule. Then there exists a mon-zero partial
isometry u € M, ».(C)®P®B such that uu* = p, ¢ = u*u € B* and u*y(z)u =
qx for all x € P, where we consider P c P* diagonally.

Proof. Consider the P-P-bimodule H given by
PHP = y(Pe1)(P(C" ® LQ(P®B)))P ®1-

Since H is a multiple of the trivial P-P-bimodule, there exists a non-zero
vector v € p(C" ® I?(P®B)) such that y(z)v = va for all z € P. Taking its
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polar decomposition, we may assume that v is a non-zero partial isometry in
p(C" ® P®B). As in the proof of Proposition 4.3.2, a maximality argument
provides a family of non-zero partial isometries (v;), inside p(C" ® P®B),
satisfying ¢ (z)v; = v;x for all x € P and such that p = >, v;vF. Putting all v;
in one row, we get u € M,, ..(C)®P®B. Then ¢(z)u = uz, for all z € P. We
also have that wu* = Y v, =pand uv*ue (1® PR®1) n (PRB)” = B”.
Thus, u is the required partial isometry. O

Proof of Theorem 4.3.1. Let p;Hps be a finite index irreducible M-M-bimodule.
We prove that #H is isomorphic to a bimodule in the range of the functor
F : Bimod(Q c Q1) — Bimod(M), constructed in Section 4.3.1. We do this in
two steps.

Step 1. There exists a projection p € (P®B)* with (Tr®7)(p) < 400 and
x-homomorphism v : M — pM®p such that

e (M) c pM™p has finite index,
o Y(P®B) c p(P®B)*p and this inclusion has essentially finite index and
o My = uHE) -

Proof of Step 1. Let v : M — pM"p be a finite index inclusion such that
mHA = arH (). By symmetry, Theorem 4.2.4 and the remarks preceding it,
we are left with proving the two following statements.

1. Y(P®B)q <y P®B, for every projection ¢ € »(P®B)" n pM"p.

2. Whenever K < L2(M) is a (P®B)-(P®B)-subbimodule satisfying
dim_pgp(K) < +00, we have £ c I?(P®DB).

By assumption, there is no non-trivial #-homomorphism from Ny to any
amplification of Q. It follows that )(Ng) € Q. Hence, Theorem 4.2.6 implies
that 1(Ng) <ar P®B. So there is a *-homomorphism ¢ : Ny — ¢(P®B)™q and
a non-zero partial isometry v € p(M,, ,,,(C) ® M)q such that ¢(z)v = vep(z) for
all x € Ny. We have v*v € o(Ng)' n gM™q. So v*v € ¢(P®B)™q by Theorem
4.2.7. Then,

UFO(QN g (9(No)) %0 < g(PBB)™q,

by Theorem 4.2.7 again. Since Ny € P is quasi-regular (see (P3)), we also have
that
v*Y(PRB)v < v*v(QNgpsmq(9(No))"v* v < q(PRB)™q.
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Note that all the previous arguments remain true when cutting down v with a
projection in ¥(P®B)" n pM™p, so we have proven (i). Theorem 4.2.7 implies
(ii) and Step 1 is proven.

Step 2. We may assume that p € B* and that the *-homomorphism ) satisfies

e Y(x) = pzx, for all x € P,
« ¥(B) c B,
« P(Q) c pQ”p.

Proof of Step 2. By Step 1, the inclusion ¢(P®B) c p(P®B)*p has essentially
finite index. Let g be a projection in ¢¥(P®B) n p(PR®B)*p such that
K = w(p@]g)(qB(P@B)'”)p@B is a finite index P®B-P®B-subbimodule of
reeHpgp. Lemma 4.3.6 implies that pg1Kp g1 is isomorphic to a multiple
of the trivial P-P-bimodule. Lemma 4.3.7 yields a non-zero partial isometry
u € ¢(My n(C) ® PRB) satistying u*y(z)u = u*uzx for all z € P and such
that uu* = ¢ and u*u € B™. Since Y(P®B) c p(P®B)™p has essentially
finite index, this procedure provides a non-zero partial isometry v € (P®B)*
satisfying v*¥(z)u = u*ux for all x € P with wu* = p and u*u € B™.
Conjugating ¢ with u* from the beginning, we may assume that p € B*
and ¢ (x) = px for all x € P.

We have P’ n M = B and 9(z) = pzx for all x € P, with p € B*, therefore
¥(B) c B*.

Since p € (N’ n Q)* and ¢ (z) = px for all € P, the *-homomorphism
extends to an N-N-bimodular map v : L?(M) — L?(pM*p). By freeness of
Falg(N < Q) and Falg(N < P) inside Falg(N), we have that v(L%(Q)) is an
N-N-subbimodule of I?(pQ*p). Hence 1(Q) < pQ®p, which ends the proof of
Step 2. O

4.3.3 Proof of Theorem 4.D

We use the following version of [146, Theorem 0.2] for the proof of Theorem
4.D.

Theorem 4.3.8 (See [146, Theorem 0.2]). Let I" be a property (T) group and
M a separable II; factor. Let J <« H3(T',SY) be the set of scalar 2-cocycles
such that there exists a (not necessarily unital) non-trivial x-homomorphism
from Lq(T") to an amplification of M. Then J is countable.
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Proof of Theorem 4.D. Fix an inclusion of II; factors N < ) and assume that
N is hyperfinite. Suppose also that N c @ is quasi-regular and has depth 2.
Denote by N < @ < @ the basic construction.

Let a € R — Q and consider the groups A,I" and the scalar 2-cocycle €, €
7Z2(T, S') defined in at the beginning of Section 4.3. Since the group Z3 ®Z3 x
SL3(Z) has property (T), Theorem 4.3.8 implies that there are uncountably
many o € R — Q such that there is no non-trivial *~-homomorphism from
No = Lo, (Z® ® Z® x SL3(Z)) to any amplification of Q. Take one such
a € R — Q. Note that by (P1), (P3) and Lemma 4.2.17, the fusion algebra
F = AFalg(Lq, (A) € Lq, (")) is countable.

Observe that Lg_ (A) and N are two copies of the hyperfinite II; factor and
take an isomorphism 6 : N — Lgq_(A). Then, the fusion algebra F? may be
viewed as a fusion subalgebra of Falg(/N). Since Falg(N < Q) is a countable
fusion subalgebra of Falg(/N), Theorem 4.2.19 allows us to choose 6 such that
F? is free with respect to Falg(N < Q). We identify N and Lq,_ (A) through
this isomorphism and all assumptions of Theorem 4.3.1 are satisfied. Write
P, =Lg,_ (T') and write

M, =(P,®B) # Q , where B=N'nQ.
N®B

Using Theorem 4.3.1, we obtain that Bimod(M,) ~ Bimod(Q < Q).

We prove that stable isomorphism classes of M,, a« € R — Q, are countable.
Assume by contradiction that there exists an uncountable subset J € R — Q
such that M, are pairwise stably isomorphic, for j € J. We find k € J and an
uncountable subset I < J such that M,, embeds (not necessarily unitally) into
M,,,, for all i € I. In particular, Lo, (Z* @ Z® x SL3(Z)) embeds into M,
for all i € I. Since Z3 @ Z3 x SL3(Z) is a property (T) group and cohomology
classes of the cocycles

(Qa) |Z3®ZS><SL3(Z) , aeR—-Q

are two by two non-equal, this contradicts Theorem 4.3.8. O

4.4 Applications

4.4.1 Examples of categories that arrise as Bimod(M)

In this part, we give examples of categories that arise as Bimod(M) of some
IT; factor M. Note that the results in [216] and in [87] show that the trivial
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tensor C*-category and the category of finite dimensional representation of every
compact, second countable group can be realized as a category of bimodules.

Finite tensor C*-categories

The following reconstruction theorem for finite tensor C*-categories is well
known, but for convenience, we give a short proof. We use Jones’ planar
algebras [123] and Popa’s reconstruction theorem for finite depth standard
invariants [161]. See also [35] for a similar statement.

Theorem 4.4.1. Let C be a finite tensor C*-category. Then there ewists a
finite index depth 2 inclusion Q < Q1 of hyperfinite Il factors such that

Proof. We define a depth 2 subfactor planar algebra P, such that the inclusion
of hyperfinite II; factors Q < @ associated with it by [161, 123] satisfies
Bimod(Q c Q1) ~ C. Let x € C be the direct sum of representatives for every
isomorphism class of irreducible objects in C. Denote by T the conjugate object
of z. Let
P, :=End(2®@T®---®ux) .
k factors

We prove that P = |J Py is a subfactor planar algebra. Composition of
endomorphisms and the #-functor of C make P a #-algebra. The categorical
trace of C defines a positive trace on P. Moreover, the graphical calculus for
tensor C*-categories induces an action of the planar operad on P. We have
dim Py = 1, since 1¢ is irreducible. Moreover, for all £ we have dim P, < o0,
since C is finite. Finally, the closed loops represent the number dime x # 0.
So P is a subfactor planar algebra. It has depth 2, since dim Z(Py) is the
number of isomorphism classes of irreducible objects of C for every k > 1 and,
in particular, dim Z(P;) = dim Z(Ps).

Note that, in the language of [161], finite depth subfactor planar algebras
correspond to canonical commuting squares [36, 124]. So, by [161], there is
an inclusion @ < @ of hyperfinite II; factors with associated planar algebra
PQ=@1 ~ P Then z corresponds to gI?(Q1)g,. Let D = Bimod(Q < Q)
and denote by Q < @1 < Q2 the basic construction. If p,¢ are minimal
projections in @ N Q2, we canonically identify Homg.g(pl?*(Q1), q1*(Q1))
with ¢(Q" n Q2)p. This defines a C*-functor F : D — C sending pI?(Q;) =
p(oI(Q1) ®g, I#(Q1)g) to p(z ®T) and mapping morphisms as given by the
identification P2=Q1 >~ P. Then F is fully faithful and essentially surjective. We
have to prove that F' preserves tensor products. Let p,q be projections in Q' N Q.
The shift-by-two operator shy : P, — Py is defined by adding two strings on the
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left. By [36], we have pI?(Q1) ®q ¢L?(Q1) = p-sha(q)[*(Q2) as Q-Q-bimodules.
On the other hand, we have p(z®7)®q(z®T) = (p®q)(zQRT®z®T) in C. Since
under the identification P, = Q' n Qj the shift-by-two operator corresponds
to ¢ — 1® g, we have C ~ D as tensor C*-categories. This completes the
proof. O

Proof of Theorem 4.A. Let C be a finite tensor C*-category. By Theorem 4.D
it suffices to show that there is a finite index, depth 2 inclusion N < @ of
hyperfinite IT; factors, such that for the basic construction N € Q c @1 we
have Bimod(Q < @1) ~ C. Indeed, if N c @ is of finite index, then it is
quasi-regular. By Theorem 4.4.1, there is a finite index depth 2 inclusion
N_; c N of hyperfinite II; factors such that Bimod(N_; ¢ N) ~ C. Let
N_1 c N c @Q c @ be the basic construction. Then N c @ is a finite index,
depth 2 inclusion and Bimod(Q c Q1) ~ Bimod(N_; ¢ N) ~C. O

Representation categories

In [87] the categories of finite dimensional representations of compact second
countable groups were realized as bimodule categories of a II; factor. As already
mentioned, this forms a natural class of tensor C*-categories, since they can
be abstractly characterized as symmetric tensor C*-categories with at most
countably many isomorphism classes of irreducible objects. We realize categories
of finite dimensional representations of discrete countable groups and of finite
dimensional corepresentations of certain discrete Kac algebras as bimodule
categories of a II; factor. Neither does this class of categories have an abstract
characterization, nor does the finite dimensional corepresentation theory of a
discrete Kac algebra describe it completely. However, Corollary 4.4.4 shows that
we have interesting applications coming from this class of tensor C*-categories.

For notation concerning quantum groups, we refer the reader to the appendix
in Section 4.5.

Definition 4.4.2 (See Section 4.5 and Theorem 4.5 of [198]). A discrete
Kac algebra A is called maximally almost periodic, if there is a family
of finite dimensional corepresentations U, € A ® B(Hy,) such that A =
span{(id @ w)(U,) |n € N,w e B(Hy, )«}

Theorem 4.4.3. Let A be a discrete Kac algebra admitting a strictly outer
action on the hyperfinite Iy factor. Then there is a I, factor M such that
Bimod(M) >~ UCorepg,, (A°°°P).

Proof. Since A acts strictly outerly on the hyperfinite II; factor R, the inclusion
Rc Ax Rc A®°P x Ax R is a basic construction by [212, Proposition 2.5 and
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Corollary 5.6]. The inclusion R c A x R has depth 2 by [212, Corollary 5.10]
and since A is discrete, it is quasi-regular. Moreover, we have Bimod(A4 x R c
Ax Ax R) ~ UCorepg, (A°©°P) by Theorem 4.5.1. So Theorem 4.D yields a
II; factor M such that Bimod(M) ~ UCorepg, (A°°°P). O

Proof of Theorems 4.C. By Theorem 4.4.3 it suffices to show that every discrete
group G and every amenable and every maximally almost periodic Kac algebra
A has a strictly outer action on the hyperfinite II; factor R.

Let us first consider the case of a discrete group. The non-commutative
Bernoulli shift G —~ (Mz(C),tr)®“ is well known to be outer. It is clear
that ®7_; (My(C), tr) is isomorphic to R.

First note that (A®°P)°°P = A for all quantum groups A. By Vaes [213,
Theorem 8.2], it suffices to show that every amenable and every maximally
almost periodic Kac algebra A there is a faithful corepresentation of A“°P in
the hyperfinite II; factor.

If A is a discrete amenable Kac algebra, then so is A°°°P. By [213, Proposition
8.1], A®°P has a faithful corepresentation into R. If A is a discrete maximally
almost periodic Kac algebra, then A°°P is also maximally almost periodic, since
A has a bounded antipode. There is a countable family of corepresentations U,
of A°°P whose coefficients span A densely. Considering ®,B(Hy, ) as a von
Neumann subalgebra of R, the corepresentation [, U, of A°°P is faithful. O

As a corollary of Theorem 4.C, we get the following improvement of [117,
Corollary 8.8] and [86]. This is the first example of an explicitly known bimodule
category with uncountably many isomorphism classes of irreducible objects.

Corollary 4.4.4. Let G be a second countable, compact group. Then there is
a Il factor M such that Out(M) = G and every finite index bimodule of M is
of the form H(a) for some o € Aut(M). In particular, the bimodule category of
M can be explicitly calculated and has an uncountable number of isomorphism
classes of irreducible objects.

The exact sequence 1 — Out(M) — grp(M) — F(M) — 1 shows that the
fundamental group of M obtained in Corollary 4.4.4 is trivial. Note, that the
factors constructed in [86, 117] also have trivial fundamental group.

Proof. Let G be a second countable, compact group. By [199, Theorem
4.2], L(G) is maximally almost periodic and its irreducible, finite dimensional
corepresentations are one dimensional and indexed by elements of G. Their
tensor product is given by multiplication in G. So we can apply Theorem 4.C
to the discrete Kac algebra L(G) in order to obtain M. O
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4.4.2 Possible indices of irreducible subfactors

In this section, we investigate the structure of subfactors of the II; factor M
that we obtained in Theorem 4.A. We write

C(M) = {\ | there is an irreducible finite index subfactor of M with index A} .

We use the fact that the lattice of irreducible subfactors of a II; factor is
actually encoded in its bimodule category. In special cases, indices of irreducible
subfactors correspond to Frobenius-Perron dimensions (see [83, Section 8]) of
objects in the bimodule category. Using recent work on tensor categories [103]
and Theorem 4.A, we give examples of of IT; factors M such that C(M) can be
computed explicitly and contains irrationals.

Definition 4.4.5 (See [92, 237]). Let C be a compact tensor C*-category with

tensor unit 1¢.

1. An algebra (A, m,n) in C is an object A in C with multiplication and unit
maps m: AQ® A — Aand n:1c — A such that the following diagrams

commute
mid = =
ARARA — ARA A®1e A le®A
J id®m J( m J id®n J{ nid
ARA — A A® A A AR A.

2. A coalgebra (A, A, ¢€) in C is an object A in C with comultiplication and
counit map A : A > A® A and € : A — 1¢ such that (A, A* ¢*) is an
algebra.

3. A Frobenius algebra (A, m,n,A,¢) in C is an object A in C with maps m,
n, A, € such that (A, m,n) is an algebra, A = m* ¢ = n* and

(id®m)o (A®id) =Aom=(mEid)o (Id® A).

4. A Frobenius algebra (A, m,n, A, €) is special if A and n are isometric.
5. A Frobenius algebra A is irreducible if dim(Hom(1¢,.A)) = 1.

Remark 4.4.6. Note that the notion of a special Frobenius algebra is equivalent
to the notion of a Q-system [134].
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The following lemma and proposition are probably well known, but since we
could not find a reference, we give a short proof for convenience of the reader.

Lemma 4.4.7. Let M < My be a finite index inclusion of tracial von Neumann
algebras. Then 12(M) is a special Frobenius algebra in Bimod(M). The
Frobenius algebra 12(My) is irreducible if and only if M < M is irreducible.

Proof. We prove that I?(M;) is an algebra in Bimod(M) with coisometric
multiplication and isometric unit. By [134], this shows that [*(M;) is a special
Frobenius algebra. The multiplication on I?(M;) is given by m(x ®u y) = xy,
for z,y € M. The commutative diagram

m

*(My) @u LP(My) —— T*(M)

[

[7(Ma)

proves that m is well defined and coisometric. Here we denote by M < M; < M,
the basic construction and we denote by e the Jones projection. The unit map
of I?(My) is given by the canonical embedding I?(M) — 12(M;).

The inclusion M < M, is irreducible if and only if 5, I?(Mj)yy, is irreducible
if and only if 3/ I?(My)yr = 12 (My) ®pr, 12(Mi)y contains a unique copy of
M (M) O

Whenever H is a finite index M-M-bimodule over a II; factor M, we denote by
HO the set of bounded vectors in H. Recall that H° is dense in .

Proposition 4.4.8. Let M be a II; factor. Then there is a bijection between
irreducible special Frobenius algebras in Bimod(M) and irreducible finite index
inclusions M < My of I, factors. The bijection is given by

H— (M c HO) and (M C Ml) — ]V[LZ(Ml)M .

Proof. Lemma 4.4.7 shows that I2(M;) is an irreducible special Frobenius
algebra for all irreducible finite index inclusions M c M;. Let (H, m,e, A, n)
be an irreducible special Frobenius algebra in Bimod(M). We have to prove
that M < HO is a finite index, irreducible inclusion of von Neumann algebras.
Let My = Hom_ps(H) be the commutant of the right M-action. Then
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HOH —— HOuH

L

H

yields a map ¢ : H® — M,. By considering the restriction m : H @ [2(M) —
H, it is clear that ¢ is injective. Consider the special Frobenius algebra
(I2(My), ma,m2, Aa, €2). We prove that ¢(H") is a Frobenius subalgebra of
[%(M3). Indeed, the composition H® ®@ H® — H ®u H — H induces a
multiplication on H°, since M-M-bimodular maps send M-bounded vectors to
M-bounded vectors. Since m is associative, we have for &, &' € H

$(m(&,€)) - Tar = mo (m®id)(€, ¢, 1ar)

—_——

=mo (id®@m)(§,& 1u) = d(§) - #(&') = ¢(&) - H(&) -

So m is the restriction of my. By taking adjoints, we see that A is the restriction
of As. Next, note that mo (n®id) = id = mg o (12 ®id). So ¢(n(x)) - £ = x€
for all z € M < I?(M) and all £ € H. So 1 agrees with 5. Again, by taking
adjoints, € is the restriction of €s.

Let R : I?(M) — H®p H denote the standard conjugate for 7 [134]. Frobenius
algebras are self-dual via Ao, that is Aon: I?(M) — H @ H is a conjugate
for H. In particular, there is an M-M-bimodular isomorphism 1 : H — H such
that
R*
HouH —— LX(M)

Tqb@id Te
HOIyH —— H

commutes. Denoting by Ry : [*(M) — I[2(Ms) ®y [#(Mz) the standard
conjugate for I2(Ms) we have the commuting diagram
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R}

[2(Ms) @ 12 (M) — I2(M)

T (Tox)®id T €2

ma

L2(M2) QQnr L2(M2) e L2(M2)

Note that, by the definition of standard conjugates, R is the composition of
Ry with the orthogonal projection 12(Ms) ®@n I?(Ms) — H @ H. So 1 is the
restriction of o . Now consider the commutative diagram

(R¥®id)o(id®A2)
(M) @ 12 (M) ——— L(M) ®@u (M)

T (Tox)®id e2®id T

(ma®id)o(id®As)
[P(Ms) @ LA (M) ——— T12(My) @ 12 (Ma).

It restricts to the corresponding diagram with I?(Ms) replaced by H. Define
7 = (R* ®id) o (d®A) : H' @H — H and iz = (R ®id) o (id ® As). Since
mo = (62 ®id) o (Mg ®id) o (id ® As)

in the Frobenius algebra I?(M>), we have that

My @2 (My) — I7(My) HeoH —— H
and

T (To#)®id T P&®id

M2®L2(M2) e LQ(MQ) HO®H — H.

commute and the second diagram is a restriction of the first one. Denote by
@ : H - My the embedding defined by m. Then ¢(Z) = ¢(x)* for z € H° and
H(HY) = a(ﬂo). This proves that ¢(#H?) is closed under taking adjoints.

We already proved that ¢(H") is a =-subalgebra of M. Since j/H has finite
dimension, ¢(H°)is finitely generated over M. Hence, it is weakly closed in Mo,
so it is a von Neumann subalgebra. Finally, y;1?(H%)a = apHar, so M < HO is
irreducible and has finite index. O
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Remark 4.4.9. 1. By uniqueness of multiplicative dimension functions
on finite tensor C*-categories, see [45], we have [M; : M]min =
FPdim(pI?(M;)n), where [My : M]min denotes the minimal index
[104, 133] and FPdim denotes the Frobenius Perron dimension [83, Section
8]. So if M < M is extremal (for example irreducible), then we have
[M1 : M] = FPdlm(MLQ(Ml)M)

2. By Proposition 4.4.8, irreducible special Frobenius algebras correspond
to irreducible inclusions M < Mj, hence to irreducible subfactors
N < M. In particular, if Bimod(M) is finite, then C(M) =
{FPdim(H) | H irreducible special Frobenius algebra in Bimod(M)}.

We can prove Theorem 4.B now.

Proof of Theorem 4.B. Denote by C the Haagerup fusion category [4]. In [103],
possible principle graphs of irreducible special Frobenius algebras in C are
classified. Lemma 3.9 in [103] gives a list of possible principle graphs of
non-trivial simple algebras in C. Note that the list of indices in Theorem 4.B is
the same as the indices of graphs in [103, Lemma 3.9]. We will refer with 1), 2),
etc. to the graphs in this lemma. We prove that all the indices of these graphs,
are actually realized by some irreducible special Frobenius algebra in C.

Since, by [103, Theorem 3.25|, there are three pairwise different categories that
are Morita equivalent to C, all the possible principal graphs of minimal simple
algebras are are actually realized by some irreducible special Frobenius algebra
in C. So the graphs 1) and 3) are realized. Using the notation of [103] for
irreducible objects in C, the graphs 4), 6) and 7) are realized by the irreducible
special Frobenius algebras 77, v7 and . We are left with the graphs 2) and
5). Theorem 3.25 in [103] gives the fusion rules for module categories over C.
A short calculation shows that the square of the dimension of the second object
in the module category associated with the Haagerup subfactor is the index of
the graph 2). This proves that the graph 2) is realized. A similar calculation
shows that the second object in the second non-trivial module category over C
gives rise to an irreducible special Frobenius algebra with principal graph given
by 5).

So all indices in [103, Lemma 3.9] are actually attained by some irreducible
special Frobenius algebra in C. According to Theorem 4.A it is possible to find
a II; factor M such that Bimod(M) ~ C. We conclude using Remark 4.4.9. O
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4.5 Categories of unitary corepresentations and
bimodule categories of subfactors

In this section, we prove that the category of finite dimensional unitary
corepresentations of a discrete Kac algebra A, whose coopposite A°°°P acts
strictly outerly on the hyperfinite II; factor R, is realized as the the bimodule
category of the inclusion A x R c A x A x R. For convenience of the reader,
we give a short introduction.

4.5.1 Preliminaries on quantum groups
Locally compact quantum groups (see [131])

A locally compact quantum group in the setting of von Neumann algebras is a von
Neumann algebra A equipped with a normal *-homomorphism A : A - AQA
and two normal, semi-finite, faithful weights ¢, ¢ satisfying

o A is comultiplicative: (id® A) o A = (A®id) o A.

o ¢ is left invariant: ¢((w ®id)(A(z))) = ¢(x)w(1ys) for all w e M, and
allze M.

o 1) is right invariant: }((id @ w)(A(z))) = ¥ (z)w(1a) for all w € M, and
all ze M.

We call A the comultiplication of A and ¢, v the left and the right Haar weight
of A, respectively. If ¢ and v are tracial, then A is called a Kac algebra. If A
is of finite type I, then we say that A is discrete. If ¢ and v are finite, we say
that A is compact.

If T is a discrete group, then £~ (T') is a discrete Kac algebra with comultiplication
given by A(f)(g,h) = f(gh) and the left and right Haar weight both induced
by the counting measure on T'.

For any locally compact quantum group (A4, A) one can construct a dual locally

compact quantum group (A4, A) and a coopposite locally compact quantum
group A®°P. They both are represented on the same Hilbert space as A. Hence,
it makes sense to write formulas involving elements of A and A at the same

time. We have (4, A) = (Z\, A) and A is compact if and only if A is discrete.
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Corepresentations (see [205])

A unitary corepresentation in H of a locally compact quantum group A is a
unitary U € AQB(H) such that (A ® id)(U) = Us3Uis. In what follows, we
refer to unitary corepresentations simply as corepresentations. If U € B(Hy )®A
is a corepresentation of A, then we also refer to Uz inAQB(Hy) as a
corepresentation A. A corepresentation U of A is called finite dimensional
if Hy is finite dimensional. The direct sum of two corepresentations U,V of
A is denoted by U BV € AR(B(Hy) ® B(Hy)) =~ ARB(Hy) @ ARB(Hy ).
The tensor product of two corepresentations U and V is given by U XV =
U12Vi3 € ARB(Hy)®B(Hy ). An intertwiner between two corepresentations
U and V is a bounded linear map T : Hy — Hy satistying (idd ® T)U =
V(id ® T). The space of all intertwiners between U and V is denoted
by Hom(U, V). To every irreducible corepresentation U € A®B(Hy) of A,
one associates its conjugate corepresentation (* ® 7)(U) € A®B(Hy). Here
Hy denotes the conjugate Hilbert space of Hy. With this structure, the
corepresentations of a locally compact quantum group A become a tensor
C*-category UCorep(A). Its maximal compact tensor C*-subcategory is the
category of finite dimensional corepresentations UCorepg, (A). If A is a compact
quantum group, every irreducible corepresentation of A is finite dimensional and
every corepresentation is a direct sum of (possibly infinitely many) irreducible
corepresentations. Coefficients of tensor products of arbitrary length of its
irreducible corepresentations of A span it densely .

Let A denote a compact quantum group. Then we can describe the evaluation of
the Haar states on coefficients of corepresentations. In particular, (id®)(U) =
(id®¢)(U) = dy,e - 1, where 0y is 1 if U is the trivial corepresentation and 0
otherwise.

If A is discrete, its dual is compact. We can write A as

&) B(Hy).

U irr. corep. of A

For any element x € A we can characterize A(z) as the unique element
in A®A that satisfies A(z)T = Tx for all T € Hom(Uy,Us Xl Us) and all
irreducible corepresentations U,Us and Uz of A. Moreover, we can write
any corepresentation V' € A®B(Hy) of A as a direct sum of elements
Vv € B(Hy) ® B(Hy) where U runs through the irreducible corepresentations
of A. If ¢ denotes the trivial corepresentation, then V. = 1 ® 1. Moreover,

Vg =(C@#W).
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Actions of quantum groups (see [213])

An action of a locally compact quantum group A on a von Neumann algebra N
is a normal #-homomorphism a : N — A®N such that (A®id)oa = (id®a)oa.
The crossed product von Neumann algebra of N by « is then the von Neumann
algebra A x N generated by A ® 1 and a(N). We identify N and A with
subalgebras of A x N. There is a natural action & of Aon Ax N , which is
uniquely defined by a(a) = ﬁ(a) for a € A and a(r) =1®a for x € N. This
action is called the dual action of a.

If an action o : N — A®N of a locally compact quantum group on a factor
satisfies N n A x N = C- 1, then « is called strictly outer.

Let A be a discrete quantum group that acts via a on a von Neumann algebra
N. We denote A x N by M and as before we identify A and N with subalgebras
of M. If A is a Kac algebra, N is finite and « preserves a trace 7y on N, then
M is also finite. A faithful normal trace on M is given by

(r®id)(U(1®x)) =y, Tn(x),

for all # € N and for all irreducible corepresentations U € A ® B(Hy) of A. For
x € N and U € B(Hy) ® A an irreducible corepresentation of A, we write ay ()
for the projection of «(z) onto the direct summand B(Hy) ® N of AQN. For
x € N we have U(1 ® 2)U* = ay(z).

4.5.2 Corepresentation categories of Kac algebras

Theorem 4.5.1. Let N be a II; factor, A a discrete quantum group and
a: A — A®N a strictly outer action. Denote by M = A x N the crossed
product of N by o and write A x M for the crossed product by the dual action.
Then Bimod(M < A x M) ~ UCorepg,, (A°°P) as tensor C*-categories, where
UCorepg, (A°°°P) denotes the category of finite dimensional corepresentations
Of ACOOP'

Proof. We first construct a fully faithful tensor C*-functor F going from
UCorepg,, (A°°P) to Bimod(M < A x M). Then, we show that it is essentially
surjective.

Step 1. Let V e AQM,,(C) be a finite dimensional corepresentation of AP, that
is (A®1id)(V) = VigVas. We define a *-homomorphism ¢ : M — M, (C) @ M
such that

Y(x) =1®x forallze N and (id®y)(U) = Ui3Via,
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where U € B(Hy) ® Ac A@ﬁ is an irreducible corepresentation of A.
Proof of Step 1. We first show that 1 defines a x-homomorphism. This is obvious
on N. In order to prove that 1 is multiplicative on A ¢ M, we have to check
for all irreducible corepresentations Uy, Us, Us of A and for every intertwiner
T € Hom(Uy, Uy [X1U3) the identity
(id ® ¥)(U2)134(1d @ 1) (Us)234(T ®1d) = (T’ ®1d) (id ®@ ¥)(U1)
holds. We have
(T®id)id®@¢)(U1) = (T ®id)U1,13Vu, 12
= Us14U3,24(A ®id)(Viy, )123(T ®1id)
= Uz,14Us3,24Viy, 13V, 23 (T ®id)
= Uz,14V,,13U3, 24V, 23 (T ® id)
= (Id ® 9)(U2)134(id ® ¢)(Us)234 (T ® id) .
We prove that 1) is a homomorphism on alg(A, N) = #-alg(A, N). Using the
fact that U(l1®z) = ay(z)U for all z € N and all irreducible corepresentations
U of A, it suffices to note that
([deY)(U)(1®1®z) = UisVi2(1®@1®«2)
=U13(10101®x)Vis
= ay(x)13U13V12
= ay(z)13(Id @) (U).
Let us show that v is #-preserving. We have
(d@V)(C®=)(U)) == (i[d®@y)(U)
=U13V12

= U13VU,12

= (T®#)(U)s(C®#*) (V)12
= (T®*®*)(U13V12),

This shows that 1) is a *-homomorphism on *—alg(zzl\, N).
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Let us show that 1) is trace preserving on *—alg(ﬁ, N). Denote by 7 the trace
on M. For an irreducible corepresentation U of A and x € N we have

([d@T)(U(1®z)) =dp.7()la,
by the definition of 7. On the other hand we have
([dtren)(i[d®¥)(U1®z)) = ([d®tr®r)(UsVi:(1®1® x))
= 0u,e7(2)(1d @ tr) (Ve 12)
= dye(2)1a.

So 1 is trace preserving and hence it extends to a *-homomorphism ¢ : M —
M, (C)® M.

Step 2. Define a functor F' : UCorepg, (A°°°P) — Bimod(Q < Q1) such that if
V is a finite dimensional corepresentation of A°°°P and v the map associated
with it in Step 1, we have F(V) = H (). If T € Hom(V1, V,) is an intertwiner,
we set F(T) =T®id : Hy, ® (M) — Hy, @ [2(M). Then F is fully faithful
tensor C*-functor.

Proof of Step 2. 1t is obvious that F' is faithful. In order to show that F' is full,
let Vi e AQM,,,(C),V2 € A® M, (C) be finite dimensional corepresentations of
AP Denote by 11, ¥o the maps associated with V7 and V5, respectively. Let
T:C"®I*(M) — C*"®I?(M) be an intertwiner from H(F (V1)) to H(F(Vz)).
Then T € B(C™,C™) ® M satisfies

T1Rx) =TYi1(x) =¢2(x)T = (1®x)T forall ze N.

Hence, T € B(C™,C") ® 1. So, for any irreducible corepresentation U of /17 we
have

Va12To3 = UjsU13Va 12703
= Ufsth2(U)T2s
= U3T231(U)
= To3U5U13Vi 12
=T53V112.

So T comes from an intertwiner from Vi to V5. This shows that F' is full.

For an intertwiner T' € Hom(Vy,V2) we have F(T*) = F(T)*, so F is a
C*-functor.
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If V1,V, are finite dimensional corepresentations of AP )y, 1y and ¥
denote the maps associated with Vi, V5 and Vi 12V5 13 = Vi XV, respectively,
then (Id®)(U) = U1aVi12Va13 = (id ®@ ¢2) o 91 (U), for every irreducible
corepresentation U € B(Hy) ® Aof A. So 1 = (id ® 102) o 1. We obtain
F(W1) ®um F(Va) = F(V1 X1 Va) and this unitary isomorphism is natural in V;
and V,. Hence F is a tensor C*-functor.

Step 3. F is essentially surjective.

Proof of Step 3. Let H be a finite index bimodule in Bimod(M < A x M).
Write H = H(v)) for some ¢ : M — p(M,(C) ® M)p satisfying pe (1Q N)' n
(M,(C)® M) and ¢(x) = p(1®«x) for all z € N. Since N ¢ M is irreducible,
we have p € M,,(C) ® 1, so we may assume that p = 1. For an irreducible
corepresentation U of 2, by the same calculation as in Step 1, we obtain

(id @ ) (U)Uisau () = av(z)(id @) (U)Uf,

for all x € N. Since N is linearly generated by the coefficients of ay (V), it
follows that
(id@¥)(U)Uts = Vu2

for some element in Viy € B(Hy) @ M,,(C) ¢ A®M,,(C). Let

V= Vir e AQM,,(C).

U irr. corep. of A

We show that V' is a corepresentation of AP, i.e. that (A ®id)(V) = VizVas.
It suffices to show for any irreducible corepresentations Uj,Us,Us and any
intertwiner T' € Hom(Uy, Us X1 U3) that we have

Vi, 13V, 23(T ®1id) = (T ®id) (Vy, ) -
Indeed, we have
(T ®id)(Vy, ®1) = (T ®id)(id ® ¥)(U1)UT 13
= (id ®1)(Uz)134(id ® ¥) (U3 )234(U2,14U3,24)* (T ® id)
= (id ®9)(Uz2)134V53,23U5 14(T ®1d)
= (id®9)(Uz)134U5 1, V3,23(T ®1d)
= V2,13V3,23(T ®id).

This shows that V' is a corepresentation of A and H(¢) = F(V). O



Chapter 5

On the classification of free
Bogoliubov crossed product
von Neumann algebras by the
integers

This chapter is based on [183]. We consider crossed product von Neumann
algebras arising from free Bogoliubov actions of Z. We describe several
presentations of them as amalgamated free products and cocycle crossed
products and give a criterion for factoriality. A number of isomorphism results
for free Bogoliubov crossed products are proved, focusing on those arising from
almost periodic representations. We complement our isomorphism results by
rigidity results yielding non-isomorphic free Bogoliubov crossed products and
by a partial characterisation of strong solidity of a free Bogoliubov crossed
products in terms of properties of the orthogonal representation from which it
is constructed

5.1 Introduction

With an orthogonal representation (H, ) of a discrete group G, Voiculescu’s
free Gaussian functor associates an action of G on the free group factor
I'(H)"” = LF gim g (see Section 5.2.1 and [226, Section 2.6]). An action arising
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this way is called a free Bogoliubov action of G. The associated free Bogoliubov
crossed product von Neumann algebras I'(H)"” x G, also denoted by I'(H, G, )",
were studied by several authors [194, 112, 105, 106]. Note that in [194, Section 7]
free Bogoliubov crossed products with Z appear under the name of free Krieger
algebras (see also [193, Section 3] and [112, Section 6]). The classification of
free Bogoliubov crossed products is especially interesting because of their close
relation to free Araki-Woods factors [192, 194]. In the context of the complete
classification of free Araki-Woods factors associated with almost periodic
orthogonal representations of R [192, Theorem 6.6], already the classification
of the corresponding class of free Bogoliubov crossed products becomes an
attractive problem.

Popa initiated his deformation/rigidity theory in 2001 [165, 164, 166, 167, 171].
During the past decade this theory enabled him to prove a large number of
non-isomorphism results for von Neumann algebras and to calculate many
of their invariants. In particular, he obtained the first rigidity results
for group measure space I factors in [166, 167]. Moreover, he obtained
the first calculations of fundamental groups not equal to R-g in [164] and
of outer automorphisms groups in [117]. Further developments in the
deformation/rigidity theory led Ozawa and Popa to the discovery of I} factors
with a unique Cartan subalgebra in [155, 156]. Also W*-superrigidity theorems
for group von Neumann algebras [118, 27] and group measure space II; factors
[177, 173, 174, 114] were proved by means of deformation/rigidity techniques.
In the context of free Bogoliubov actions Popa’s techniques were applied
too. In [165, Section 6], Popa introduced the free malleable deformation of
free Bogoliubov crossed products. This lead in [108] and, using the work of
Ozawa-Popa, in [112, 111, 106] to several structural results and rigidity theorems
for free Araki-Woods factors and free Bogoliubov crossed products. We use the
main result of [112] in order to obtain certain non-isomorphism results for free
Bogoliubov crossed products.

In the cause of the deformation/rigidity theory, absence of Cartan algebras and
primeness were studied too. The latter means that a given II; factor has no
decomposition as a tensor product of two II; factors. Ozawa introduced in [153]
the notion of solid II; factors, that is II; factors M such that for all diffuse von
Neumann subalgebras A ¢ M the relative commutant A’ n M is amenable. In
[170], Popa used his deformation/rigidity techniques in order to prove solidity
of the free group factors, leading to the discovery of strongly solid 11; factors
in [155, 156]. A II; factor M is strongly solid if for all amenable, diffuse von
Neumann subalgebras A ¢ M, its normaliser Nj;(A)” is amenable too. We
extend the results of [112] on strong solidity of certain free Bogoliubov crossed
products and point out a class of non-solid free Bogoliubov crossed products.

Opposed to non-isomorphism results obtained in Popa’s deformation/rigidity
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theory, there are two known sources of isomorphism results for von Neumann
algebras. First, the classification of injective von Neumann algebras by Connes
[52] shows that all group measure space 1I; factors L (X) x G associated with
free, ergodic, probability measure preserving actions G —~ X are isomorphic to
the hyperfinite II; factor R. By [151, 55|, if H —~ Y is another free, ergodic,
probability measure preserving action of an amenable group, then these actions
are orbit equivalent, meaning that there is a probability measure preserving
isomorphism A : X — Y such that A(G - z) = H - A(z) for almost every
x € X. By a result of Singer [196], this means that there is an isomorphism
L*(X) x G =TI*(Y) x G sending L*(X) to L*(Y).

The second source of unexpected isomorphism results for von Neumann algebras
is free probability theory as it was initiated by Voiculescu [223]. More specifically,
we use the work of Dykema on interpolated free group factors and amalgamated
free products. Interpolated free group factors were independently introduced
by Dykema [73] and Radulescu [181]. If M is a II; factor, the amplification
of M byt is M* = p(M,,(C) ® M)p, where p € M,,(C) ® M is a projection of
non-normalised trace Tr®7(p) =t . It does not depend on the specific choice
of n and p. The interpolated free group factors can be defined by
n—1
LF, = (LF,)", where r =1 + o for some ¢t > 1 and n € Nxo.

Dykema’s first result on free products of von Neumann algebras in [72] says that
L(F,) * R = L(F,,4+1) for any natural number n. He developed his techniques
in [73, 71, 74, 75] arriving in [76] at a description of arbitrary amalgamated
free products A *p B with respect to trace-preserving conditional expectations,
where A and B are tracial direct sums of hyperfinite von Neumann algebras
and interpolated free group factors and the amalgam D is finite dimensional.

We combine the work of Dykema with a result on factoriality of certain
amalgamated free products. The first such results for proper amalgamated
free products were obtained by Popa in [162, Theorem 4.1], followed by several
results of Ueda in the non-trace preserving setting [209, 210, 211, 208]. We will
use a result of Houdayer-Vaes [113, Theorem 5.8], which allows for a particularly
easy application in this chapter.

Section 5.3 treats the structure of free Bogoliubov crossed products. We obtain
several different representations of free Bogoliubov crossed products associated
with almost periodic orthogonal representations of Z in Theorem 5.3.3 and
Proposition 5.3.7. We calculate the normaliser and the quasi-normaliser of the
canonical abelian von Neumann subalgebra of a free Bogoliubov crossed product
in Corollary 5.3.9 and address the question of factoriality of free Bogoliubov
crossed products in Corollary 5.3.10. Most of the results in this section are
probably folklore.



118 ON THE CLASSIFICATION OF FREE BOGOLIUBOV CROSSED PRODUCT VON NEUMANN

ALGEBRAS BY THE INTEGERS

In Section 5.4, we obtain isomorphism results for free Bogoliubov crossed
products associated with almost periodic orthogonal representations. In
particular, we classify free Bogoliubov crossed products associated with
non-faithful orthogonal representations of Z in terms of the dimension of the
representation and the index of its kernel. They are tensor products of a diffuse
abelian von Neumann algebra with an interpolated free group factor.

Theorem 5.A (See Theorem 5.4.3). Let (w, H) be a non-faithful orthogonal
representation of Z of dimension at least 2. Let r = 1 + (dim7 — 1)/[Z : ker 7].
Then

['(H,Z,7)" =~ L”([0,1])®LF, ,

by an isomorphism carrying the subalgebra LZ of T'(H,Z,w)" onto L*([0,1]) ®
C[Z:ker | .

For general almost periodic orthogonal representations of Z we can prove that
the isomorphism class of the free Bogoliubov crossed product depends at most on
their dimension and on the concrete subgroup of S! generated by the eigenvalues
of their complexification. More generally, we have the following result.

Theorem 5.B (See Theorem 5.4.2). The isomorphism class of the free
Bogoliubov crossed product associated with an orthogonal representation w of Z
with almost periodic part m,, depends at most on the weakly mizing part of =,
the dimension of m.p and the concrete embedding into St of the group generated
by the eigenvalues of the complezification of m,p.

In contrast to the preceding result, we show later that representations with
almost periodic parts of different dimension can be non-isomorphic.

Theorem 5.C (See Theorem 5.5.1 and Theorem 5.6.4). If A denotes the left
regular orthogonal representation of Z and m denotes some one dimensional
orthogonal representation, then

I(AZ)®C,z, x@n) =T(F(2),Z,)\)" =L(F,) 2T(F(2)®C*Z, ®2-1)".

The next results shows, however, that there are representations whose
complexifications generate isomorphic, but different subgroups of S! and their
free Bogoliubov crossed products are isomorphic nevertheless.

Theorem 5.D (See Corollary 5.4.5). All faithful two dimensional representa-

tions of Z give rise to isomorphic free Bogoliubov crossed products.

Inspired by the connection between free Bogoliubov crossed products and cores
of Araki-Woods factors, and classification results for free Araki-Woods factors
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[192], Shlyakhtenko asked at the 2011 conference on von Neumann algebras and
ergodic theory at IHP, Paris, whether for an orthogonal representation (7g, Hg)
of Z the isomorphism class of I'(Hg, Z, 7gr)" is completely determined by the
representation @n>1 ﬂ'%" up to amplification. The present chapter shows that
this is not the case. We discuss other possibilities of how a classification of
free Bogoliubov crossed products could look like and put forward the following
conjecture in the almost periodic case.

Conjecture 5.A (See Conjecture 5.4.6). The abstract isomorphism class
of the subgroup generated by the eigenvalues of the complexification of an
infinite dimensional, faithful, almost periodic orthogonal representation of Z is
a complete invariant for isomorphism of the associated free Bogoliubov crossed
product.

In Section 5.5, we describe strong solidity and solidity of a free Bogoliubov
crossed product I'(H, Z, 7)" in terms of properties of 7. The main result of [112]
on strong solidity of free Bogoliubov crossed products is combined with ideas of
Toana [114] in order to obtain a bigger class of strongly solid free Bogoliubov
crossed products of Z.

Theorem 5.E (See Theorem 5.5.2). Let (w, H) be the direct sum of a mizing
representation and a representation of dimension at most one. Then I'(H,Z,m)"
is strongly solid.

Orthogonal representations that have an invariant subspace of dimension two
give rise to free Bogoliubov crossed products, which are obviously not strongly
solid. In particular, all almost periodic orthogonal representations are part
of this class of representations. The next theorem describes a more general
class of representations of Z that give rise to non-solid free Bogoliubov crossed
products. If (7, H) is a representation of Z, we say that a non-zero subspace
K < H is rigid if there is a sequence (ng)x in Z such that 7w(ng)|x converges to
idx strongly as n; — 0.

Theorem 5.F (See Theorem 5.5.4). If the orthogonal representation (mw, H)
of Z has a rigid subspace of dimension two, then the free Bogoliubov crossed
product T'(H,Z, )" is not solid.

We make the conjecture that this theorem describes all non-solid free Bogoliubov
crossed products of the integers.

Conjecture 5.B (See Conjecture 5.5.5). If (m, H) is an orthogonal represen-
tation of Z, then the following are equivalent.

e I'(H,Z,m)" is solid.
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o I'(H,Z,m)" is strongly solid.

e 7 has no rigid subspace of dimension two.

In Section 5.6, we prove a rigidity result for free Bogoliubov crossed products
associated with orthogonal representations having at least a two dimensional
almost periodic part. Due to the lack of invariants for bimodules over abelian
von Neumann algebras, we can obtain only some non-isomorphism results.

Theorem 5.G (See Theorem 5.6.4). No free Bogoliubov crossed product
associated with a representation in the following classes is isomorphic to a
free Bogoliubov crossed product associated with a representation in the other
classes.

e The class of representations A@m, where A is the left reqular representation
of Z and 7 is a faithful almost periodic representation of dimension at
least 2.

o The class of representations A@m, where \ is the left reqular representation
of Z and 7 is a non-faithful almost periodic representation of dimension
at least 2.

e The class of representations p@ m, where p is a representation of Z whose
spectral measure p and all of its convolutions pu*™ are non-atomic and
singular with respect to the Lebesgue measure on S' and 7 is a faithful
almost periodic representation of dimension at least 2.

o The class of representations p@ 7, where p is a representation of Z whose
spectral measure  and all of its convolutions u*™ are non-atomic and
singular with respect to the Lebesgue measure and © is a non-faithful
almost periodic representation of dimension at least 2.

e Faithful almost periodic representations of dimension at least 2.
e Non-faithful almost periodic representations of dimension at least 2.

e The class of representations p @ w, where p is mizing and dim7 < 1.
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5.2 Preliminaries

5.2.1 Orthogonal representations of 7 and free Bogoliubov
shifts

With a real Hilbert space H, Voiculescu’s free Gaussian functor associates a
von Neumann algebra I'(H)” = LFgim g [226]. For every vector § € H, we
have a self-adjoint element s(§) € T'(H)” and T'(H)" is generated by these
elements. If £,n € H are orthogonal then s(§) + is(n) is an element with
circular distribution with respect to the trace on I'(H)”. In particular, the
polar decomposition of s(§) + is(n) equals a - u, where a,u are #free from
each other, a has a quarter-circular distribution and u is a Haar unitary.
The free Gaussian construction T'(H)” acts by construction on the full Fock
space CQ @ @, H®" where Q is called the vacuum vector. It is cyclic
and separating for T'(H)” and T'(H)"Q2 o H®=:" for all n € N. Hence, for
@&, € H®1s" there is a unique element W (£ ® - --®&,) € T'(H)"” such
that W(1® - ®&6)Q2=6® - ®&n.

The free Gaussian construction is functorial for isometries, so that an orthogonal
representation (7, H) of a group G yields a trace preserving action G —~ T'(H)”,
which is completely determined by g - s(¢) = s(7(g)¢). If §, ® -+ ® &, € H®=1e?
and g € G, then g- W (€1 @ ®€,) = W(n(g)e1 ® - @ 7(9)€n).

An action obtained by the free Gaussian functor is called free Bogoliubov action.
If G ~ T'(H)" is the free Bogoliubov action associated with (m, H), then
the representation of G on I?(I'(H)") © C - 1 is isomorphic with @, ., 7®".
The associated von Neumann algebraic crossed product I'(H)” x G of a free
Bogoliubov action is denoted by I'(H, G, 7)". If there is no confusion possible,
we denote I'(H, G, )" by M, and the algebra LG c I'(H, G, )" by A,.

An orthogonal representation (m, H) is called almost periodic if it is the direct
sum of finite dimensional representations. It is called periodic if the map 7
has a kernel of finite index in G. We call m weakly mizing, if it has no finite
dimensional subrepresentation. Every orthogonal representation (m, H) is the
direct sum of an almost periodic representation (m,p, Hap) and a weakly mixing
representation (Tym, Hywm)-

Spectral theory says that unitary representations 7w of Z correspond to pairs
(4, N), where p is a Borel measure on S! and N is a function with values
in N u {0} called the multiplicity function of 7. The measure p and the
equivalence class of N up to changing it on pu-negligible sets are uniquely
determined by 7. Given any orthogonal representation (7, H) of Z, denote by
(7, He) its complexification. Note that a pair (u, N) as above is associated with
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a complexification of an orthogonal representation if and only if 4 and N are
invariant under complex conjugation on S' © C. An orthogonal representation
(m, H) is weakly mixing if and only if x4 has no atoms. It is almost periodic if
and only if the measure associated with (w¢, He) is completely atomic. In this
case the atoms of u and the function N together form the multiset of eigenvalues
with multiplicity of m¢. Up to isomorphism, an almost periodic representation
7 is uniquely determined by this multiset.

5.2.2 Rigid subspaces of group representations

A rigid subspace of an orthogonal representation (7, H) of a discrete group G
is a non-zero Hilbert subspace K < H such that there is a sequence (gy,), of
elements in G tending to infinity that satisfies 7(g,, )¢ — £ as n — oo for all
¢ € K. Note that this terminology is borrowed from ergodic theory and has
nothing to do with property (T).

A representation 7 without any rigid subspace is called mildly mizing. The main
source of mildly mixing representations of groups are mildly mixing actions [190].
A probability measure preserving action G — (X, ) has a rigid factor if there
is a Borel subset B ¢ X, 0 < p(B) < 1 such that liminf,_,, n(BAgB) = 0.
We say that G —~ (X, ) is mildly mixing if it has no rigid factor.

Proposition 5.2.1. Let G —~ (X, u) be a probability measure preserving action
of a group G. Then the Koopman representation G — I12¢(X,p) is mildly
mixing if and only if G —~ (X, ) is mildly mizing.

Proof. First assume that the Koopman representation is mildly mixing and
take B ¢ X a Borel subset such that there is a sequence (g,,), in G going to
infinity that satisfies u(BAg,B) — 0. Consider the function { = u(B)-1—1p €
I20(X,p). Then

l€ — g€l = g5 — 18]35 = n(BAgnB) — 0.

By mild mixing of G — I24(X, u), it follows that & = 0, so u(B) € {0,1}. Hence
G —~ (X, p) is mildly mixing.

For the converse implication assume that there is a sequence (g, ), in G tending
to infinity such that there is a unit vector £ € I2(X, i) that satisfies g,& — &.
We have to show that G —~ (X, ) has a rigid factor. Replacing £ by its
real part, we may assume that it takes only real values. For § > 0 define
As = {z|&(x) = 0} and Bs = {z|&(x) > &}. Since §, £(z)dpu(z) = 0, there is
some d > 0 such that 0 < p(A4s) < 1.
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Take &€ > 0. We have () _s By = As, so that we can choose §' < § such that
u(Bs\As) < g/4. Take N € N such that for all n > N we have [ — g,&|| <
(6 —¢") - /4. Then for all n > N, we have

1(AsAgnAs) = 11(As\gn As) + 1(As\g, * As)

13
< u(As\gnBs') + 11(As\g;, ' Bs) + 3

1 2
< G (LJ\%BJI €(2) — gné(x)[*dz+

j S —ggls<x>|2dx> + 2
As\grn "~ B

< ﬁ L [£) = gu&@)Pdu(a) + 5

<eE.

It follows that pu(AsAgnAs) — 0 asn — . So G —~ (X, u) is not mildly
mixing. U

5.2.3 Bimodules over von Neumann algebras

Let M, N be von Neumann algebras. An M-N-bimodule is a Hilbert
space ‘H with a normal =representation of A : M — %(H) and a normal
anti-s-representation p : N — %B(H) such that A(z)p(y) = p(y)\(x) for all
x€M,ye N. If M, N are tracial, then we have y,H =~ ,(I?(M)® £(N)*)p
with p e M ® Z(£(N)). The left dimension dimy;_ H of 3H is (Tar ® Tr)(p)
by definition. Similarly, we define the right dimension dim _y H of Hy. We
say that p,Hy is left finite, if it has finite left dimension, we call it right finite if
it has finite right dimension and we say that H is a finite index M-N-bimodule,
if its left and right dimension are both finite.

If A, B c M are abelian von Neumann algebras and 4Hp c [?(M) is a finite
index bimodule, then there are non-zero projections p € A, q € B, a finite index
inclusion ¢ : pA — ¢B and a non-zero partial isometry v € pMg¢q such that
av = vp(a) for all a € pA. Since ¢ is a finite index inclusion, we can cut down
p and ¢ so as to assume that ¢ is an isomorphism.
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5.2.4 The measure associated with a bimodule over an
abelian von Neumann algebra

We describe bimodules over abelian von Neumann algebras, as in [53, V.
Appendix B]. Compare also with [142, Section 3] concerning our formulation. Let
A = T*(X, p) be an abelian von Neumann algebra and sH4 an A-A-bimodule
such that \,;p : A —» ZB(H) are faithful. Then the two inclusions A p :
A — HB(H) generate an abelian von Neumann algebra 4. Writing [v] for
the class of a measure v and pi,ps for the projections on the two factors
of X x X, we can identify A = L*(X x X,v) where [v] is subject to
the condition (p1)«([¥]) = (p2)«([¥]) = [1]. We can disintegrate H with
respect to v and obtain a decomposition H = ¢ Ha, o, dv(z1,22). Let
N : X x X — Nu {00} be the dimension function H,, 5, — dim¢ Hz, 4, Then
N is unique up to changing it on v-negligible sets and the triple (X, [v], N)
is a conjugacy invariant for sH4 in the following sense. Let (X, [vx], Nx)
and (Y,[vy], Ny) be triples as before associated with bimodules Hx and
Hy over A = L”(X, ;) and B = L*(Y, ), respectively. A measurable
isomorphisms A : (X, [ux]) — (Y, [uy]) such that (A x A)([vx]) = [vy] and
Ny o (A x A) = Nx vy-almost everywhere induces an isomorphism 6 : A — B
and a unitary isomorphism U : Hx — Hy satisfying

UXx(a) = Ay (0(a))U and Upx(a) = py(0(a))U for allae A.

Moreover, any such pair (U, 6) arises this way. The proof of this fact works
similar to that of [142].

Let 4M4 be an A-A-bimodule and identify A = (X, ). Denote by (X, [v], N)
the spectral invariant of sH4 as described in the previous paragraph. If
p =1y € A is a non-zero projection, then it follows right away that the spectral
invariant associated with ,a(pHp)pa equals (Y, [V]y xy], Ny xv)-

Let Z —~ P be an action of Z on a tracial von Neumann algebra P and
M = P xZ. Let (1, N;) denote the spectral invariant of the representation 7
on [?(P) © C1 associated with the action of Z on P. Write A = LZ =~ L*(S}),
where the identification is given by the Fourier transform. We describe the
spectral invariant (S!, [v], N) of the A-A-bimodule I?(M)©I?(A) in terms of
(m, Nz).

We first calculate the measure vggs, on S' x S defined by

j S8 dvegs, (5,1) = (ta(€ ® 82 )us £ ® 6,
S1 xSt
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with a,b € Z, £ € I?(P)©Cl1 and 6, € #(Z) the canonical basis element
associated with n € Z. Denote by ¢ the measure on S defined by

[ 5 neto) = rtwre.o>
We obtain for a,be Z, € e [2(P)©Cl and ne Z
Ll - 57t dvegs, (5,1) = (ua (€ @ 6n)up, € ® 5,)
= ba,-6(m(a)§, &

=04, —b J 5% dpue(s)
Sl
[ s e o N0
StxSt

_ f s94 AT, (1e ® M) (5, 1),
S1xSt

where T : S' x St — St x S : (s,t) — (s,5t). So vegs, = Tw(pe ® ) for all
£eI?(M)©C1 and for all n € Z. Tt follows that [v] = Ty ([u® A]).

We calculate the multiplicity function N of I?(M) ©I?(A) in terms of N,. Let
Y,,n € N U {00} be pairwise disjoint Borel subsets of S! such that N,|y, =n
for all n. There is a basis ({n.k)o<k<nenuisxy of I2(P) © C such that g, , is
has support equal to Y,,. S0 &, ®d; withleZand 0 <k <neNu{w}isa
basis of I?(M) ©12(A). Write Z,, = T(Y,, x S'). Then

J st dve,, s (s,t) = f s“0t d(an L @A) (s, 1),
Zn ‘ Yy, xS1 ’

so the support of v¢, ,@s, is equal to Z,,. As a consequence, N|z, = n for all
n € N u {0}. We obtain the following proposition.

Proposition 5.2.2. Let (u,N) be a symmetric measure with multiplicity
function on S* having at least one atom and let 7 be the orthogonal representation
of Z on H = 12R(S%, pu, N) given by w(1)f = ids: - f. Identifying LZ =
L*(SY) wvia the Fourier transform, the multiplicity function of the bimodule
= sH)D(H, Z, m)"= sty ds equal to oo almost everywhere.

Proof. We have I'(H,Z,7)" = T'(H)" x Z, where the crossed product is taken
with respect to the free Bogoliubov action of Z on I'(H)"”, which has @, >;7®"
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as its associated representation on I?(T'(H)"”)©C - 1. If a is an atom of p, then
also @ is one. Denote by x, the character of Z defined by Z ~ S'. We have
T=T® (Xa)" ® (xz)" < 7®2". As a consequence, the multiplicity function of
@n=17®" is equal to 00 almost everywhere. So, by the calculations preceding
the remark, this is also the case for the multiplicity function of the bimodule
L‘D(Sl)LQ(F(H,Z,?T)”)LD(SI). O

Proposition 5.2.3. The disintegration of [v] with respect to the projection
onto the first component of S' x St is given by [v] = {[u * 65] dA(s).

Proof. Let Y, Z < S* be Borel subsets and denote by (j15)ses: the constant field
of measures with value p.

@, ([ @ )< 2) = [ z-sHaxe
- [ wrs@ane

_ (Ll,u*ésd)\(s))(YxZ).

This finishes the proof. O

5.2.5 Amalgamated free products over finite dimensional
algebras

Let Ro denote the class of finite direct sums of hyperfinite von Neumann
algebras and interpolated free group factors, equipped with a normal, faithful
tracial state. In [76, Theorem 4.5], amalgamated free products of elements of
Ro over finite dimensional tracial von Neumann subalgebras were shown to be
in Ro again. Moreover, their free dimension in the sense of Dykema [75] was
calculated in terms of the free dimension of the factors and of the amalgam of
the amalgamated free product. We explain the free dimension and Theorem 4.5
of [76].

The free dimension of a set of generators of a von Neumann algebra M € Rs is
used to keep track of the parameter of interpolated free group factors. If an
interpolated free group factor has a generating sets of free dimension r, then it
is isomorphic to LF,. Following [76], we define the class Fy € Ra, d € R~q as
the class of von Neumann algebras

M=D® @pz‘L[Fn @@%Mnj (C)a

iel jeJ
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where

e p; is the unit of LF,, and ¢; the unit of M, (C),

o b = i(pi), 85 = 22%) and D is a diffuse hyperfinite von Neumann

algebra and
o L+t —1) =X, s7=d.

Theorem 4.5 of [76] says that if M = My %4 My with My, Ms € Ry and A a
finite dimensional tracial von Neumann algebra, then M € R5. Moreover, if
My € Fq,, My € Fg, and A € Fy4, then M € Fy, 4d,—q. We will use the following
special case.

Theorem 5.2.4 (See Theorem 4.5 of [76]). Let My € Fy, and My € Fy,
and A € Fq a common finite dimensional subalgebra of My and My. If M =
M 4 Ms is a non-amenable factor, then M =~ LF, withr =dy + ds — d.

We will use this result in combination with a special case Theorem 5.8 of [113].

Theorem 5.2.5 (See Theorem 5.8 of [113]). Let M;, My be diffuse von
Neumann algebras and A a common finite dimensional subalgebra. If Z(M7) N
Z(Msy) n Z(A) = C1, then My =4 My is a non-amenable factor.

5.2.6 Deformation/Rigidity

Let A ¢ M be an inclusion of von Neumann algebras. The normaliser of
A in M, denoted by Ny (A)”, is the von Neumann algebra generated by all
unitaries u € M satisfying uAu* = A. The quasi-normaliser of A in M is the
von Neumann algebra QN,,(A)” generated by all elements x € M such that
there are ay,...,a, and by, ..., by, satisfying Nz < >, a;N and «N < Y, Nb;.

The following notion was introduced in [166, Theorem 2.1 and Corollary 2.3]. If
M is a tracial von Neumann algebra, A, B © M are von Neumann subalgebras,
we say that A embeds into B inside M if there is a right finite A-B-subbimodule
of I?(M). In this case, we write A <3 B. If every A-M-subbimodule of I?(M)
contains a right finite A-B-subbimodule, then we say that A fully embeds into
B inside M and write A <!, B.

If A, B c (M,7) is an inclusion of tracial von Neumann algebras, we say that
A is amenable relative to B inside M, if there is an A central state ¢ on the
basic construction (M, eg) such that |y = 7. If A is amenable relative to an
amenable subalgebra, then it is amenable itself.
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We will use the following theorem from [112]. It is proven there for unital
von Neumann subalgebras only, but the same proof shows, that it’s true for
non-unital von Neumann subalgebras.

Theorem 5.2.6 (Theorem 3.5 of [112]). Let G be an amenable group with
an orthogonal representation (mw, H) and write M = T'(H,G,xw)". Letpe M

be a non-zero projection and P € pMp a von Neumann subalgebra such that
P 4y LG. Then Npprp(P)” is amenable.

Since we need full embedding of subalgebras in this chapter, let us deduce a
corollary of the previous theorem.

Corollary 5.2.7 (See Theorem 3.5 of [112]). Let G be an amenable group with
an orthogonal representation (w, H) and write M =T'(H,G,w)". Let P < M be

a von Neumann subalgebra such that Ny (P)” has no amenable direct summand.
Then P <%, LG.

Proof. Take P c M as in the statement and let us assume for a contradiction
that P {5\/1 LG. Let p € P'n M be the maximal projection such that pP {,; LG.
Then p € Z(Na(P)"). By [166, Lemma 3.5], we have Nparp, (pP)" 2 pNa(P)"p.
By Theorem 5.2.6, N,arp(pP)” is amenable. So Ny (P)” has an amenable direct
summand. This is contradiction. O

The next theorem, due to Vaes, allows us to obtain from intertwining bimodules
a much better behaved finite index bimodule.

Proposition 5.2.8 (Proposition 3.5 of [216]). Let M be a tracial von Neumann
algebra and suppose that A, B < M are von Neumann subalgebras that satisfy
the following conditions.

e A<y Band B <, A.

o If H < I2(M) is an A-A bimodule with finite right dimension, then
H < 12(QN,, (4)").

Then there is a finite index A-B-subbimodule of 1?(M).

Deformation/Rigidity for amalgamated free products

We will make use of the following results, which control relative commutants in
amalgamated free products.
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Theorem 5.2.9 (See Theorem 1.1 of [117]). Let M = My 4 My be an
amalgamated free product of tracial von Neumann algebras and p € M a
non-zero projection. If Q < pMip is a von Neumann subalgebra such that

Q s, A, then Q" npMp = Q' n pMp.

Theorem 5.2.10 (See Theorem 6.3 in [114]). Let M = Mj %4 My be an
amalgamated free product of tracial von Neumann algebras and p € M. Let
Q < pMp an arbitrary von Neumann subalgebra and w a non-principal ultrafilter.
Denote by B the von Neumann algebra generated by A and M. One of the
following statements is true.

e Q' n(pMp)¥ € B and Q' n (pMp)~ <pre AY,
o Nonp(Q)" < M, for some i€ {1,2} or

e Qc is amenable relative to A for some mnon-zero projection e €
Z(Q" npMp).

Also, we will need one result on relative commutants in ultrapowers.

Lemma 5.2.11 (See Lemma 2.7 in [114]). Let M be a tracial von Neumann
algebra, p € M a non-zero projection, P € pMp and w a non-principal ultrafilter.
There is a decomposition p = e+ f, where e, f € Z(P' n(pMp)*)n Z(P' npMp)
are projections such that

o e(P' n(pMp)¥) = e(P' npMp) and this algebra is completely atomic and
o f(P' n(pMp)¥) is diffuse.

A tracial inclusion B c M of von Neumann algebras is called mizing if for all
sequences (), in the unit ball (B); that go to 0 weakly and for all y, 2 € MOB,
we have

|IEs(yxnz)|2 = 0if n — 0.

If a subalgebra is mixing, we can control the normaliser of algebras embedding
into it.

Lemma 5.2.12 (See Lemma 9.4 in [114]). Let B ¢ M be a mixing inclusion
of tracial von Neumann algebras. Let p € M be a projection and QQ < pMp. If
Q <M B, then NM(Q)” <m B.

Finally, we will use two theorems on intertwining in amalgamated free products
from the work of Ioana [114]. This theorem is stated in [114] for unital inclusions
into amalgamated free products, but it remains valid in the more general case.
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Theorem 5.2.13 (See Theorem 1.6 in [114]). Let M = Mj #4 Ms be an
amalgamated free product of tracial von Neumann algebras, p € M a projection
and Q < pMp an amenable von Neumann subalgebra. Denote by P = Nypp(Q)”
the normaliser of Q inside pMp and assume that P’ n (pMp)¥ = Cp for some
non-principal ultrafilter w. Then, one of the following holds.

e Q< A,
e P < M;, for some i€ {1,2} or
e P is amenable relative to A.

Theorem 5.2.14 (See Theorem 9.5 in [114]). Let B € M be a mizing inclusion
of von Neumann algebras. Take a non-principal ultrafilter w, a projection p e M
and let P < pMp be a von Neumann subalgebra such that P' n (pMp)¥ is diffuse
and P' n (pMp)¥ <p BY. Then P <p; B.

5.3 General structure of I'(H,Z, )"

Recall that we write M, for I'(H,Z,m)". The decomposition of orthogonal
representations into almost periodic and weakly mixing part, also gives rise to
a decomposition of their free Bogoliubov crossed products.

Remark 5.3.1. Let (7, H) be an orthogonal representation of a discrete group
G. Then
D(H)" =T(Hap)" # T (Hym)"”

and so we get a decomposition
M, =T(H)" x G = (I'(Hap)" ¥ G) #c (T(Hym)" x G).

More generally, if 7 = @, m;, then My = #rq; My, .

5.3.1 I'(H,Z,n)" for almost periodic representations

If not mentioned explicitly, m denotes an almost periodic orthogonal
representation of Z in this section. Recall that an irreducible almost periodic
orthogonal representation of Z has dimension 1 if and only if its eigenvalue is 1
or —1. In all other cases, it has dimension 2 and its complexification has a pair
of conjugate eigenvalues A\, A € S1\{1, —1}.
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Notation 5.3.2. We denote by LZ x Z, A € S! the crossed product by the
action of Z on LZ where 1 € Z acts by multiplying the canonical generator
of LZ with A. This is isomorphic to the crossed products L”(S!) x, Z and
7 % L*(SY), where Z acts on S' by rotation by A. Moreover, 1 ® LZ is carried
onto 1 ® LZ and 1 ® L*(S1), respectively, under this isomorphism.

Theorem 5.3.3. Let m be an almost periodic orthogonal representation of Z.

Let M\iy\i, 0 < i < ny € Nu {oo} be an enumeration of all eigenvalues in
SN\{1, =1} of the complexification of w. Denote by ny and mq the multiplicity of
—1 and 1, respectively, as an eigenvalues of w. Note that dim 7 = 2n1 +no +myg
and write n = nq +ng, m =ny +mg. Then

Mﬂ— = (L[Fm®LZ) *1QLZ (L[Fn X o Z)
= (Lﬂ?m®L7»(Sl)) *1®LJO(Sl) (”‘_n [XB LI(Sl)) 5

where, denoting by g;, 0 <1 < ny, and hy, 0 < i < ng, the canonical basis of
Frjgn, =Fp

e a(l) acts on ug, by multiplication with A; for 0 <i < ny,
e a(l) acts on up, by multiplication with —1 for 0 < i < nq,

e B(gi) acts on St by multiplication with \; for 0 <i < ny,
B(

h;) acts on St by multiplication with —1 for 0 < i < na.

Moreover, the subalgebras T'(H,)" ¢ M, and
L(F4n) € (LF,,®LZ) #1grz (LF,, x4 Z)

are identified under this isomorphism and so are the subalgebras LZ and L*(S1),
respectively.

Proof. If 7 is the trivial representation, then M, = LF g, ,®LZ. If 7 is the
one dimensional representation with eigenvalue —1, then

(Ar c M) = (1®LZcLZ x_, 7).

Let 7 be an irreducible two dimensional representation of Z with eigenvalues
X, A e St of its complexification. We show that

Mﬂ— = (LZ@LZ) *1QLZ (LZ X\ Z)

where the inclusion 1 ® LZ c (LZ®LZ) #1grz (LZ % Z) is identified with
A © M, under this isomorphism. Indeed, let £, € H be orthogonal such that
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& + in is an eigenvector with eigenvalue A for the complexification of m. Write
¢ = s(§) +is(n). Then c is a circular element in M, such that a,(1)c = Ac.
Let ¢ = ua be the polar decomposition. As explained in Section 5.2.1, u is a
Haar unitary and a has quarter-circular distribution and they are =-free from
each other. Moreover, a,(1)a = a and thus a,(1)u = Au, by uniqueness of
the polar decomposition. So the von Neumann algebra generated by a, v and
LZ is isomorphic to (LZRLZ) *1g1z (LZ x LZ) and A, is identified with the
subalgebra 1 ® LZ. This gives the first isomorphism in the statement of the
theorem. Since LZ x\ Z =~ 7 x, L’*(S') sending 1 ® LZ onto 1 ® L*(S!) via the
Fourier transform, we also obtain the second isomorphism in the statement of
the theorem.

The case of a general almost periodic orthogonal representation 7 follows by
considering its decomposition into irreducible components as in Remark 5.3.1.
Indeed, denote by

= P m.® P ma® P ma

0<i<n, 0<i<ns 0<i<mo
the decomposition of 7 into irreducible components. Here 7; . has dimension
2 with eigenvalues A;, \; of (m; )¢ and m; _1 has eigenvalue —1 and ;1 is the
trivial representation. Then
My = (kosi<n, Mx, ) #4, ((fo<i<ns, aMz, _,) #a, (o<i<mg,AMx, )
= (ogi<n 1@ (s1)(LZ @ L7 (1)) #1gr(sty (Z xx, L7(S1)))
#1017 (51) (Fogi<ns, 101251y (Z X1 L”(s%))
#1912 (51) (Fogicmo, 101 (s1) (LZ @ L7 (S1)))
= (LF 0, +mo®L (81) t1g12(s1) (Fryms x5 L7 (S1))
= (LE®L*(SY)) vigu(s1) (Fn x5 L”(S1))
and this isomorphism carries A, = LZ onto L*(S1). O
Corollary 5.3.4. A, is reqular inside M.
Proof. By Theorem 5.3.3, we know that
M; = (L[Fm®LJO(Sl)) #1gme (st (Fn X L”(sh),

and A, is sent onto 1 ® L*(S!) under this isomorphism. It follows immediately
that A, c M, is regular. O
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Note that in Theorem 5.3.3 the action of F,,, on S! is not free.

Proposition 5.3.5. Adopting the notation of Theorem 5.53.8, the relative
commutant of L*(S1) in (LF,, @L*(S")) #1012 (s1) (Fn x L7 (S1)) is LGRL*(S),
where G = F,, * kerm and 7 : F,, = S! sends a generator g; to \; and h; to —1.

Proof. 1t is clear that the algebra generated by the elements u, with g € G
is part of the relative commutant of L*(S') in M,, so we have to prove the
other inclusion. Let z € L*(S')’ n M, and write © = Y, _, zuy, the Fourier
decomposition with respect to the action of Z on I'(H)”. Then xy € LZ' n M,
so we can assume that « € I'(Hx)" = L(Fy1p). Write x =3, ¢ | agug with
ag € C. Since for all g the action of a(1) leaves Cu, invariant, x is fixed by « if
and only if it has only coefficients in G. This proves the lemma. O

Corollary 5.3.6. The von Neumann algebra M, is factorial if and only if =
1s faithful.

Proof. Let 7 be a non-faithful representation and take g € Z such that 7(g) = id.
Then uy € LZ is central in M. For the converse implication, note that 7 is
faithful if and only if the eigenvalues of ¢ generate an infinite subgroup of
S'. Any central element z of M, must lie in LG®LZ and hence in LZ, since
G is a free group. Writing LF,, x Z = F,, x L(S!) as in Theorem 5.3.3, the
assumption implies that the action of F,, on L*(S!) is ergodic. So z € C1. O

Using Proposition 5.3.5, we can derive a representation of M, as a cocycle
crossed product of LG®LZ by the group K < S! generated by the eigenvalues of
mc. For any element k € K choose an element g;, € F,, such that a(1)ug, = ku,,.
Define a G valued 2-cocycle Q on K by

Q(k, 1) = grg; 'ar "

Then K acts on G by conjugation and on LZ by k #u; = k- u;. Note that if K
is cyclic and infinite, then we can choose 2 to be trivial. In this case, denote by
91,92, - -. a basis of F,;,4,, such that ug, acts by rotation on S! and ¢9,93,. ..
commute with A,. We see that the elements gfgigfk, 122, keZ are a free
basis of G. So K acts by shifting a free basis of G. This proves the following
proposition.

Proposition 5.3.7. There is an isomorphism (A, ¢ M;) = (1®L*(S!) c
K xq (LG®L*(SY))). In particular, if m is two dimensional and faithful, then
M, =~ Z x (LF.®L*(S')), where Z acts on F., by shifting the free basis and
on S' by multiplication with a non-trivial eigenvalue of T¢.
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5.3.2 A,-A,-bimodules in 1?(M,)

If 7 is weakly mixing, it is known [214, Proof of Theorem D.4] that every right
finite A,-A.-bimodule is contained in I?(A,). More generally, we have the
following proposition.

Proposition 5.3.8. Let (w, H) be an orthogonal representation of Z and let
My = M,y #a, Mym be the decomposition of M, into almost periodic and
weakly mizing part. Then every right finite A,-Ay-bimodule in 1?(M,) lies in
[2(Map)-

Proof. By Lemma D.3 in [214], we have to prove that there is a sequence of
unitaries (ux); in A tending to 0 weakly such that for all z,y € M © M,,
we have |E(zu,y*)||2 — 0. It suffices to consider x = w(§; ® - ® &),y =

W @+ ®@ny,) for some & @~ QEHO, m @+ - @nyy € HO™ such that at
least one §; and one 7; lie in Hyy. Take a sequence (gx)r going to infinity in Z
such that {(m(gx)&,n) — 0 for all &, € Hyp. Then

IEa(zug,y™)|2 = [Ea(w(& @ - &)w(m(gr)m @ - - @ w(gr)nm)* )ug, |2
= |T(w( @ &)w(m(gr)m ® -+ @ m(gk)nm) ™)
=6 Q - &n, ()M @ -+ @ (gk)im )y
= Op,m - €1 m(gr)m) - - L&, T(Gr) )

—> 0.

This finishes the proof. O

As an immediate consequence, we obtain the following corollaries.

Corollary 5.3.9. Let m be an orthogonal representation of Z. The
quasi-normaliser and the normaliser of Ax < My are equal to M,y,. In particular,
Al n M, = LGRA,, where G as defined in Proposition 5.3.5 is isomorphic to
a free group.

Proof. This follows from Proposition 5.3.8 and Corollary 5.3.4. O

Corollary 5.3.10. If w is an orthogonal representation of Z, then M, 1is
factorial if and only if 7 is faithful.

Proof. This follows from Proposition 5.3.8 and Corollary 5.3.6. O
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Remark 5.3.11. Note that Corollary 5.3.10 also follows directly from Theorem
5.1 of [112].

5.4 Almost periodic representations

In this section, we prove that the isomorphism class of M. for an almost periodic
orthogonal representation 7 of the integers depends at most on the concrete
subgroup of S! generated by the eigenvalues of the complexification of 7. We
also classify non-faithful almost periodic orthogonal representations, that is
periodic orthogonal representations, in terms of their kernel and their dimension.

5.4.1 Isomorphism of free Bogoliubov crossed products of
almost periodic representations depends at most on
the subgroup generated by the eigenvalues of their
complexifications

The following lemma will be used extensively in the proof of Theorem 5.4.2.

Lemma 5.4.1. Let S be any set and xs, s € S a free basis of Fg. Let I ¢ S
and ws, s € I be words with letters in {xs|s € S\I}. Then ys = xsws, s € I
together with ys = x5, s € S\I form a basis of Fg.

Proof. Tt suffices to show that the map Fg — Fg : 5 — ys has an inverse. This
inverse is given by the map

Fs —>Fg:x »—){xsws_l’ ifsel
. S

T, otherwise.

Theorem 5.4.2. Let w, p be orthogonal representations of Z such that

e their almost periodic parts have the same dimension,

o the eigenvalues of their complexifications generate the same concrete
subgroup of S and

e their weakly miring parts are isomorphic.

Then My = M, via an isomorphism that is the identity on Ax = LZ = A,.
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Proof. By the amalgamated free product decomposition My = My, #4, Mym
of Remark 5.3.1, it suffices to consider almost periodic representations. Denote
by G the subgroup of S' generated by the eigenvalues of the complexification
of m. We may assume that the number of eigenvalues in e2mi(0:3) of the
complexification of 7 is larger than the one of p. Denote by A; € 627”:(0’%), 0<
i <mny,ni €NU{oo}and \;, 0 < i < n the eigenvalues of the complexification
of w that are not equal to 1 or —1. Denote by na, mg € N U {0} the multiplicity
of —1 and 1, respectively, as eigenvalues of w. By Theorem 5.3.3, we have
M, = Fgim» X L*(S?), where Fqim - has a basis consisting of

o elements x;, 0 < i < n; acting on S! by multiplication with \;,
« elements y;, 0 < i < n; acting trivially on S!,
o elements z;, 0 < i < ny acting on S' by multiplication with —1 and

o elements w;, 0 < i < mg acting trivially on S'.

Denote by p; € €2™(%2) 0 < i < I3 € N U {0} the non-trivial eigenvalues
of the complexification of p that lie in the upper half of the circle and by
la, ko € N U {00} the multiplicity of —1 and 1, respectively, as an eigenvalue of p.
Since dim 7 = dim p, we have 2-1; + s + kg = 2-ny1 + ng + mg. We will find a
new basis r; (0<¢<1y),s; (0<i<l1+ko),t; (0<i<ly) of Fgjm~ such that

e 7;, 0 < i<y, acts by multiplication with p; on S!,
o 5;,0<1i<ky+1, acts trivially on S! and

e t;, 0 <i < ly, acts by multiplication with —1 on S*.

Invoking Theorem 5.3.3, this suffices to finish the proof.

In what follows, we will apply Lemma 5.4.1 repeatedly. Replace the basis
elements y;, 0 < i < ny by §; = y;x; for 0 < i < ny. Then §; acts on S!
by multiplication with u;, 0 < 7 < ny;. Recall that we assumed [} < n;.
Since the subgroups of S! generated by the eigenvalues of the complexifications
of m and p agree, for every 0 < ¢ < [; there are elements a;;...,a;4 € Z,
0<4i1,---5Jia <m1 and a; 0 € {0,1} such that

e

where a; o = 0 if —1 is not an eigenvalue of 7. Replacing x;, 0 < ¢ <y by

s —lsain ~Qi (i) . 54,0
Ti = Xils Yy, yji,rx(i) 1
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we obtain a new basis of Fgi, » consisting of r; (0 < i <1ly), x; (I3 <1 <nq),
¥ (0<i<mny),z (0<i<ng)and w; (0<i<myg).

We distinguish whether —1 in an eigenvalue of p or not. If —1 is no eigenvalue
of p, we produce elements s; (0 < i < (ny —I1) +n1 + ng + mg) acting trivially
on S', where we put ny — Iy = 0, if [; = n; = w. Replace z; by a:igjjl for
l1 €1 < n; and then multiply ¢;, 0 < ¢ < ny and z;, 0 < 7 < ng from the
right with words in r;, 0 < ¢ < [; so as to obtain these new basis elements
s; (0 <@ < (n1—10)+mn +n2+mp). Since dimm = 2ny + ny + my =
I1 + (n1 — 1) + n1 + no +mg and Iz = 0, we found a basis 7; (0 < i < ly), s;
(0 < i<l + ko) of Fgim~ acting on St as desired. This finishes the proof in
the case —1 is no eigenvalue of p.

Now assume that —1 is an eigenvalue of p. We distinguish three further cases.
Case Iy < mnyi: There are elements aj...,an € Z, 0 < 41,...,i4 < N1 and
ag € {0,1} such that

—L= A A (=D,

where ap = 0 if —1 is not an eigenvalue of 7. Replace z;, +1 by

_ ~—1 ~a1 ~Qq 00
by =Ty 419,51 %, 0 Uil A -

Case 1 = ny and —1 is an eigenvalue of w: Put t, = z1.

Case Il = n1 and —1 is no eigenvalue of m: Since 2ni + mqg = 2l1 + l2 + ko,

in this case, m has a trivial subrepresentation of dimension 1 or 7 is infinite

dimensional. Hence, we may assume that m > 1, since all y;,0 < ¢ < n; act

trivially on S'. There are elements a; ...,aq € Z, 0 < 41,...,iq < ni such that
—L= A A

Put

— ~ai ~Aa
t; = wlyil yia .

In all three cases, we obtain a basis of Fgim» with elements r; (0 < i@ < y),
possibly ¢; and some other elements such that

e 15,0 <i<ly,acts by multiplication with p; on S!,

e t; acts by multiplication with —1 on S' and

« all other elements of the basis act on S! by multiplication with some

element in G < St.

We can multiply the elements different from r;, (0 < ¢ < I;), and ¢; in the
basis by some word in the letters r;, 0 < ¢ < l; and t; in order to obtain a
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basis r; (0 <1< ll), S; (O <i<dimm—1; — 1), t1 or r; (0 <1 < ll), Si
(0 < i < dim7 — I;) where all elements s; act trivially on S'. We used the
convention dimnw — [y = oo, if I; = dim7 = 0. If I3 + kg < o0, replace s;,
(i +ko<i<ly+ko+ls—1) by t; g2 =s;-t1, in order to obtain a basis
i (0<i<ly),s (0<i<ly+ko),t (0<i<Iy) of Fgimn~ acting on S as
desired. If [ + kg = oo, then replace lo-many s; by s;t; so as to obtain the new
basis r; (0 <i <1y),s; (0<i<Iy+ko), t; (0<1i<Iy) of Faimr acting on S!
as desired. This finished the proof. O

5.4.2 The classification of free Bogoliubov crossed products
associated with periodic representations of the integers
is equivalent to the isomorphism problem for free group
factors

The classification of free Bogoliubov crossed products associated with
non-faithful, that is periodic, orthogonal representations of Z implies a solution
to the isomorphism problem for free group factors. For example, if 1 denotes
the trivial orthogonal representation of Z, we have M,; =~ LF,®LZ. So,
proving whether M,,.; = M,,.q or not for different n and m amounts to solving
the isomorphism problem for free group factors. More generally, we have the
following result.

Theorem 5.4.3. Let w be a periodic orthogonal representation of the integers.
If 7 is trivial, then A, c M, is isomorphic to an inclusion 1 ® L*([0,1]) c
LF qim » ®L* ([0, 1]). If 7 is one dimensional and non-trivial, then (A, € M) =
(C?®1®L*([0,1]) € M2(C) ® L*([0,1]) ® L*([0,1])). If m has dimension
at least 2, let T be the index of the kernel of m in Z. Then (A, € M;) =
(CT @ L*([0,1]) « LF,®L*([0,1])), where LF, is an interpolated free group
factor with parameter

1
r=1+f(dim7r—1).

Proof. The case where 7 is trivial, follows directly from the definition of
['(H,Z,7)". To prove all other cases, by Theorem 5.4.2, it suffices to consider
representations m = mo@n-1 with 7y irreducible and non-trivial and n € Nu{o0}.

We first consider irreducible representations. The case of m one dimensional
is immediately verified from the definition of M, = I'(H,Z,7)". If 7 has

2mi - _2mi

and A\ = e T, with

dimension 2 and is irreducible denote by A = e’T
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T = [Z : ker 7] € Nxo, the eigenvalues of w¢. Then

M, =~ (LZ@LZ) *1QLZ (LZ X\ Z)

12

(LZBETBL ([0, 11) *1grgie 10, (17 ([0, LDBMr (€L ([0, 1))
= (LZ®CT) #1ger (L([0, 1)®M7(C)))BL ([0, 1]) -

Since (LZRCT) #1g¢r (L*([0,1])@M7(C)) is a non-amenable factor by Theorem

5.2.5, Theorem 5.2.4 shows that

(LZBCT) #1pcr (L*([0,1])@M7(C))) = LF,

with 1 1
r=1+1—(1—f)=1+f(d1m7r—1).

Moreover,
(Ar € M) = (1®CT®L”([0,1]) c (LZ&C")# ger
(L7 ([0, 1D@Mr(C)))®L"([0,1]))
=~ (€T @ L*([0,1]) c LF,®L*([0,1])).
Consider now m = mg @ n - 1 for an irreducible, non-trivial and non-faithful
representation of dimension two my. The case where my is of dimension one

and has eigenvalue —1 is similar, but simpler. Let T' = [Z : ker my] € N> and
neNu {o}. Let 79 = 1+ 4. Then Theorems 5.2.4 and 5.2.5 imply that

Mro@nr = (LF,®LZ) #1g17~cTeu (j0,1]) (LF &L ([0,1]))
~ (LF, ® C" #,gcr LF,,)®L”([0,1])
~ LF, @ L ([0,1]),

with 1 1 1
7’=1+T(n—1)+r0—(1—f)=T(dim(m;@n-]l)—l).

Also
(A; c M) = (CT" ®L*([0,1]) < LF,®L*([0, 1]))

and this finishes the proof. O
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5.4.3 A flexibility result for representations with one pair of
non-trivial eigenvalue

In this section, we will show that all free Bogoliubov crossed products associated
with almost periodic orthogonal representations of Z with a single non-trivial
irreducible component, which is faithful, are isomorphic.

Proposition 5.4.4. Let m; for i € {1,2} be almost periodic orthogonal
representations of Z having the same dimension.  Assume that their
complexifications (m;)c each have a single pair of non-trivial eigenvalues
i, N € e2TR\Q with any multiplicity. Then My, = M, by an isomorphism,
which carries Ay, onto Ar,.

Proof. By Theorem 5.4.2 is suffices to consider the case where the eigenvalue
A; of (m;)c has multiplicity one. Theorem 5.3.3 shows that

My, = (LFdim -1 @ L7(S)) *1g12(s1) (Z x5, L7(SY)),

by an isomorphism, which caries A, onto L*(S'). Taking an orbit equivalence

of the ergodic hyperfinite I1; equivalence relations induced by Z 28! and
Z 23 S! we obtain an isomorphism Z x, I°(S!) = Z x,, L*(S!), which
preserves L (S!) globally. This can be extended to an isomorphism M,, =~ M,,,
which carries A, onto A,. O

Corollary 5.4.5. All faithful two dimensional representations of Z give rise to
isomorphic free Bogoliubov crossed products.

5.4.4 Some remarks on a possible classification of Bogoli-
ubov crossed products associated with almost periodic
orthogonal representations

In Theorem 5.4.2 we showed that the isomorphism class of free Bogoliubov
crossed products associated with almost periodic orthogonal representations of
Z depends at most on the concrete subgroup of S! generated by the eigenvalues
of its complexification. However, Theorem 5.4.3 and Proposition 5.4.4 both show
that there are orthogonal representations 7, p of Z such that these subgroups
of S! are not equal and still they give rise to isomorphic free Bogoliubov
crossed products. This answers a question of Shlyakhtenko, asking whether a
complete invariant for the isomorphism class of the free Bogoliubov crossed
products associated with an orthogonal representation m of Z is @,>7®"
up to amplification. By Theorem 5.4.3, the classification of free Bogoliubov
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crossed products associated with non-faithful orthogonal representations of
Z is equivalent to the isomorphism problem for free group factors. However,
assuming that M is a factor, i.e. that 7 is faithful, the abstract isomorphism
class of the group generated by the eigenvalues of the complexification of 7 could
be an invariant. Due to the fact that the isomorphisms found in Theorem 5.4.3
preserve the subalgebra A, c M, for non-faithful orthogonal representations,
we believe that this abstract group is indeed an invariant for infinite dimensional
representations.

Conjecture 5.4.6. The abstract isomorphism class of the subgroup generated by
the eigenvalues of the complexification of an infinite dimensional faithful almost
periodic orthogonal representation of Z is a complete invariant for isomorphism
of the associated free Bogoliubov crossed product.

5.5 Solidity and strong solidity for free Bogoliubov
crossed products

The proof of the following result can be extracted literally from the proof of
[195, Theorem 1]. It shows that the dimension of the almost periodic part of
an orthogonal representation of Z is relevant for the isomorphism class of its
free Bogoliubov crossed product. We give a full prove for the convenience of
the reader. Recall that we denote by 1 the trivial orthogonal representation of
the integers.

Theorem 5.5.1. Let w be a one dimensional orthogonal representation of Z.
Then the free Bogoliubov crossed products My and Mgy, are isomorphic to LFs.

Proof. First note that 7 is either the trivial representation or 7(1) acts via
multiplication with —1 on R. We treat both cases simultaneously. We have
My = L(F,) x Z, where Z —~ [, by shifting a free basis (g, )nez. Denote by u
the natural generator of Z in the copy L(Z) c L(F,) x Z and denote by v the
generator of Z in L(Z)® 1 € L(Z) x4 Z.

We claim that {u,v} and {uy,} generate free subalgebras inside M)g,. Since
elements in {u*v!|k,l € Z} span L(Z) x4, Z densely, it suffices to check that
alternating words w in {u*v! |k, 1 € Z, (k,1) # (0,0)} and {u}’ |m € Z*} satisfy
7(w) = 0. Take such a word w. Because of the commutation relation vu,, =
g, ., v in L(Fy) x Z and vu = tuv in L(Z) 341 Z, we can rewrite w = e-w' - vF,
where

o ce{l,—1},
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« w' an alternating word in {u), |n€Z,leZ*} and {u™|m e Z*} and

e k€ Z such that k # 0 if w’ is trivial.

Denote by E : Myg. — L(Z) the natural conditional expectation of the free
product decomposition Mygr = My #1,z) Mr. Since E(ul, ) =0 = E(u™) for
allneZ and all [, m € Z*, we obtain

T(w) = er(w'v*) = er(E(w)E(W")) = er(w’)r(v*) = 0,

where the last equality steams from the fact that k # 0 if w’ = 1. Since
{u,v,uy,} generates Mg, as a von Neumann algebra, it follows that

Mygr = {u,v}" # {ug}" = (L(Z) 41 Z) = L(Z) = L(F2)
by Theorems 5.2.4 and 5.2.5. O

The fact that the left regular representation plus a trivial one dimensional
representation gives rise to a strongly solid free Bogoliubov crossed product,
triggered the following observation.

Theorem 5.5.2. Let m be an orthogonal representation of Z that is the direct
sum of a mizing representation and a representation of dimension at most one.
Then M, is strongly solid.

This theorem follows from the next, more general, one. Its proof can be taken
almost literally from [114, Theorem 1.8]. We include a proof for the convenience
of the reader.

Theorem 5.5.3. Let A c N be a mizing inclusion of A into a strongly solid,
non-amenable, tracial von Neumann algebra. Let A < B an inclusion of A into
an amenable, tracial von Neumann algebra. Then M = N =4 B is strongly solid.

Proof. We first show that B ¢ M is mixing. As in [114, Theorem 1.8], we have
to show that for every sequence (by,), in (B); with b, — 0 weakly and for all
a,be B, z,ye N© A we have

Ea(zEA(abnb)y) -3 0.
Since b,, — 0 weakly, also E 4 (ab,b) — 0 weakly. The fact that A ¢ N is mixing,
then implies that |E4(zE4(ab,b)y)|2 — 0.

Let @ < M be a diffuse, amenable von Neumann subalgebra and write P =
Mu(Q)”. Let p € Z(P) be the maximal projection such that Pp has no
amenable direct summand. We assume p # 0 and deduce a contradiction. Let
w be a non-principal ultrafilter. By Theorem 5.2.11 we have p = e + f with
e, f € Z((Pp) n pMp) n Z((Pp)’ n (pMp)*~) such that
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e e((Pp) n (pMp)*) = e((Pp)’ n pMp) and this algebra is atomic and
o f((Pp)' n (pMp)¥) is diffuse.

Either e # 0 or f # 0. In both cases, we will deduce that Pp <;; N.

Ife # 0let eg € (Pp)' npMp be a minimal projection. Then (Peg) n(egMey)® =
Ceq, so Theorem 5.2.13 applies to Aey € egMeg and Peg C Nogare, (Qeq)”. We
obtain that one of the following holds.

. Qeo <M A,
o Pey <y N,
o Peg <y Bor

e Peg is amenable relative to A.

The first item implies that Qey < B and since B © M is mixing, Lemma 5.2.12
shows that Pey < B. So the first and the last two items imply that Pegy has
an amenable direct summand, which contradicts the choice of p. We obtain
Pp <ps N in the case e # 0.

If f # 0 then Theorem 5.2.10 applied to Pf c fM f shows that one of the
following holds.

o (Pf)Y n(fMf)® <pe A%,
e Pf <y N,
. Pf<MBOI‘

o there is a non-zero projection fo € Z((Pf) n fMf) such that Pfy is
amenable relative to A.

The first item implies (Pf) n (fM f)¥ <pe B“ and since B ¢ M is mixing,
Theorem 5.2.14 shows that Pf <j; B. So the first and the last two items imply
that Pf has an amenable direct summand, contradicting the choice of p. This
shows Pp <p; N in the case f # 0.

We showed Pp <p; N. Let pg € P, ¢ € Q, po < p be non-zero projections,
v € pMgq satisfying vv* = pg and ¢ : pgPpy — ¢N¢ a *-homomorphism such
that xv = vé(x) for all x € pgPpg. We have v*v € ¢(poPpo)’ n M. Since pgPpy
has no amenable direct summand it follows that ¢(poPpo) ¥ A, and hence
Theorem 5.2.9 shows that v*v € N. So we can conjugate P by a unitary in
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order to assume pgPpg < N. Take partial isometries w1, ...,w, € P such that
z =, ww} e Z(P) and wiw; = p < po for alli = 1,...,n. Then we obtain a
*_homomorphism

Y : Pz — M,(C) @ NP : z — (wizw;); ;-

By [107, Proposition 5.2], know that M, (C) ® pNp is strongly solid. This
contradicts
Y(Pz) € M, ©)epns(¥(Az2))"

and the choice of p. O

Proof of Theorem 5.5.2. Write m = 7 @ o with m; mixing and dimm, < 1.
Then M, = M, #4 M,,. Since A € M, is mixing by [214, Theorem D.4], it
is strongly solid by [112, Theorem B]. Also M, is amenable, so Theorem 5.5.3
applies. O

We have a partial converse to the previous theorem.
Theorem 5.5.4. Let m be an orthogonal representation of Z with a rigid

subspace of dimension at least two. Then M, is not solid.

Proof. Let w be a non-principal ultrafilter. Let £, € H be orthogonal vectors
such that there is a sequence (ng)r going to infinity in Z and w(ng)é — &,
w(ng)n — n if k — oo. Then [u,,] € A¥ is a Haar unitary and hence P =
{s(£),s(n)}" is a non-amenable subalgebra such that P’ n AY < P’ n M¥
is diffuse. Applying [153, Proposition 7] to P c M, shows that M, is not
solid. O

We conjecture that the previous theorem is sharp.
Conjecture 5.5.5. Let m be an orthogonal representation of Z. Then the
following are equivalent.
o M, is strongly solid.
e M, is solid.
o 7 has no rigid subspace of dimension two.
The Theorems 5.5.2 and 5.5.4 of this work as well as Theorem A of [106] on free

Bogoliubov crossed products that do not have property Gamma are supporting
evidence for our conjecture. We explain how Houdayer’s result is related it.
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Theorem 5.5.6 (See Theorem A of [106]). Let G be a countable discrete
group and m : G — O(H) any faithful orthogonal representation such that
dim H > 2 and w(G) is discrete in O(H) with respect to the strong topology.
Then T'(H)" %, G is a I factor which does not have property Gamma.

First of all, note that in view of Proposition 7 of [153], being non-Gamma
can be considered as a weak form of solidity. Secondly, we remark that an
orthogonal representation 7 : G — O(H) has discrete range, if and only if the
whole Hilbert space H is not rigid in our terminology. This explains the link
between our conjecture and the result of Houdayer.

5.6 Rigidity results

In this section, we want to show how to extract some information about 7
from the von Neumann algebra M. As an application, we exhibit orthogonal
representations of Z that cannot give rise to isomorphic free Bogoliubov crossed
products.

Theorem 5.6.1. Let my, mo be orthogonal representations of Z such that each
of them has a finite dimensional invariant subspace of dimension 2. Assume
that M = My, = M,,. Let A= A, and identify A, with a subalgebra B < M.
Then there is a finite index A-B-subbimodule of 1?(M).

Proof. We want to use Theorem 5.2.8 in order to find a finite index A-B
bimodule in I?(M). So we have to verify its assumptions. Corollary 5.3.9
implies that the normalisers of A and B are non-amenable. So by Corollary
5.2.7, A <!, B and B <!, A hold. By Proposition 5.3.8, every right finite A-A
subbimodule of I?(M) lies in [2(QN,,(A)"). So Theorem 5.2.8 says that there
is a finite index A-B-subbimodule of I?(M). O

Corollary 5.6.2. Let 71,7 be two orthogonal representations of Z having
a finite dimensional subrepresentation of dimension at least 2. Let A; C
My and As < My be the inclusions of the free Bogoliubov crossed products
assoctated with m and o, respectively. Assume that My =~ Msy. Then there
are projections p1 € A1, po € Ao and an isomorphism ¢ : Aip1 — Asps
preserving the normalised traces such that the bimodules a,p, (p112(M)p1)a,p,
and g(a,p,)(P2l? (M)p2)g(a,p,) are isomorphic.

Proof. By Theorem 5.6.1, there are projections p; € Aj, pos € As, an
isomorphism ¢ : Ai;p; — Asps and a partial isometry v € p;Mpy such
that av = v¢(a) for all @ € A;p;. Denote by g1 and g the left and right
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support of v, respectively. Cutting down p; and py, we can assume that

suppE 4, (¢1) = p1 and supp E 4, (¢2) = p2. The bimodules Alpl(q1L2 (M)q1)a,p,
and. (4,p,) (@217 (M)q2)p(45p,) are isomorphic.

Since p; is the central support of ¢; in A’ n M, there are projections e,, € A,
n € N such that ¢; = Y, e, and partial isometries v¥ € A’ " M, neN, k <n
such that Y, v (vF)* =e, and (v))*v} = e qu, (vE)*vk < gy, for all n and all
2 < k < n. Since the multiplicity function of 4,I?(M),, is constantly equal to

infinity by Proposition 5.2.2, we find that

Aen(En@i P (M)engi)ae, = @B ac, WELZ(M)(WE)*) e, = e, (enl2(M)en)ae,, »

k<n

for all n. So also

ap (1P (M)p1) ap, = ap, (1P (M)q1) ap, -

Similarly, we have 4,p,(P2L2(M)P2)asps = Asps(q2L2(M)g2)a,p,- This finishes
the proof. O

A measure theoretic reformulation of Corollary 5.6.2 can be given as follows.

Corollary 5.6.3. Let (p1, N1), (u2, No) be symmetric probability measures with
multiplicity function on S' such that both have at least 2 atoms when counted
with multiplicity. For i = 1,2, let m; be the orthogonal representation of Z
by multiplication with idg: on 12g(SY, i, N;). If My, = M,,, then there are
Lebesgue non-negligible Borel subsets By, By < S' and a Borel isomorphism
@ : By — By preserving the normalised Lebesque measures such that

x ([Z pi" IBl> [ 13" 6.]lm, -

nz=0 nz=0

for Lebesgue almost every s € Bo

Proof. Write M = M,, = M,, and A;, for i € {1,2}. Denote by [v;] =
S50 #F™ # 05] dA(s) the maximal spectral type of 4,L?(M),, according to
Proposition 5.2.3. By Corollary 5.6.2, there are projections p; € Ay, po € As and
an isomorphism ¢ : A;p; — Aaps such that the bimodules a,,, (p112(M)p1)a,p,
and ¢(A1p1)(p2L2(M)p2)¢(A1p1) are isomorphic. The projections p; are indicator
functions of Lebesgue non-negligible Borel sets B; — S! and the isomorphism
¢ equals ¢4 for some Borel isomorphism ¢ : By — By preserving the
normalised Lebesgue measures. Since the bimodules 4,,,(p1L?*(M)p1)a,p, and
Aops (D212 (M)p2) 4,p, are isomorphic via ¢, their maximal spectral types are
isomorphic via ¢ x . Using their integral decomposition with respect to the
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projection on the first component of S! x S! as it is calculated in Proposition
5.2.3, we obtain

(jB [ g s |BQdA<>> (@Xs@( (3t s |BldA<>>

2 n=0 B n=0

= (p x id)« ( [ D] ud™ % 80018, dA(s ))

B> n=0

- (L o[ 11" <80l ) s ))

As a result, for almost every s € B, we obtain the equality

. ([Z pr" |31> (D 13" #6:]lm, -

n=0 n=0

O

The next theorem follows by applying the previous one to some special cases.

Theorem 5.6.4. No free Bogoliubov crossed product associated with a
representation in the following classes is isomorphic to a free Bogoliubov crossed
product associated with a representation in the other classes.

1. The class of representations A@myp, where A is a multiple of the left reqular
representation of Z and m,y is a faithful almost periodic representation of
dimension at least 2.

2. The class of representations A\@,p,, where A is a multiple of the left reqular
representation of Z and T,y is a non-faithful almost periodic representation
of dimension at least 2.

3. The class of representations p @ m,.p, where p is a representations of Z by
multiplication with idg: on I?r(SY, ), u is a probability measure on S'
such that p*" is singular for all n and Ty is a faithful almost periodic
representation of dimension at least 2.

4. The class of representations p @ m,p,, where p is a representations of Z
by multiplication with idg1 on 12r(S*, 1), p is a probability measure on
St such that p*™ is singular for all n and m,p is a non-faithful almost
periodic representation of dimension at least 2.
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5. Fuaithful almost periodic representations of dimension at least 2.
6. Non-faithful, almost periodic representations of dimension at least 2.

7. The class of representations p @ m, where p is mizing and dim 7 < 1.
Note that by [112], there are measures as mentioned item (iii) and (iv).

Proof. By Theorem 5.5.3, all free Bogoliubov crossed products associated with
representations in 7 are strongly solid, but for all other free Bogoliubov crossed
products A ¢ M is an amenable diffuse von Neumann subalgebra with a
non-amenable normaliser.

It remains to consider representations in (i) to (vi). They satisfy the requirements
of Corollaries 5.6.2 and 5.6.3.

We first claim that representations from (i) to (vi) with a faithful and non-faithful
almost periodic part, respectively, cannot give rise to isomorphic free Bogoliubov
crossed products. Let m be an orthogonal representation of Z and let B — S*
be Lebesgue non-negligible. The subgroup generated by the eigenvalues of the
complexification of 7 is dense if and only if the almost periodic part of 7 is faithful.
So by Section 5.2.4, the atoms of the spectral invariant of , 4 _pl?(M)p,a, are
an ergodic equivalence relation on B x B if and only if 7 has a faithful almost
periodic part. So Corollary 5.6.2 proves our claim.

Let us now consider the weakly mixing part of the representations in the theorem.
It is known that the spectral measure of the left regular representation of Z
on £g(Z) is the Lebesgue measure. So from Corollary 5.6.3, it follows that
the representations whose weakly mixing part is the left regular representation,
cannot give a free Bogoliubov crossed product isomorphic to a free Bogoliubov
crossed product associated with any of the other representations in the
theorem. Finally, note that for any non-zero projection p € A, the bimodules
A L2(DM;p)ya. is a direct sum of finite index bimodules if and only if the
representation 7 has no weakly mixing part. So appealing to Corollary 5.6.2,
we finish the proof. O



Chapter 6

A Connection between easy
quantum groups, varieties of
groups and reflection groups

This chapter is based on our joint work with Moritz Weber [184]. We prove
that a fairly large class of compact quantum groups injects into the lattice of
reflection groups via a natural construction. More precisely, we associate with
certain easy quantum groups G, in the sense of Banica and Speicher, a normal
subgroup of the infinite free product Z5* of the cyclic group of order two, which
completely remembers the compact quantum group G. Exploiting this relation,
we use the theory of varieties of groups in order to show that easy quantum
groups are not classifiable. Furthermore, we construct an inverse to the above
map, which associates, by means of a quantum isometry group construction, an
easy quantum group with certain reflection groups. This gives rise to a large
number of new quantum isometry groups.

Introduction

In Connes’ noncommutative geometry [53], the correct replacement for compact
groups is given by Woronowicz’s compact quantum groups [233, 236]. They
are established due to a definition by a natural set of axioms, the natural
development of a structural theory and a Tannaka-Krein type result identifying
their categories of representations precisely as the concrete compact tensor

149
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C*-categories [234]. One of the most intriguing questions in noncommutative
geometry is the question for classification of noncommutative objects in terms
of classical data.

The main result of this chapter states that there is a lattice isomorphism between
specific classes of compact quantum groups and reflection groups. This opens
new perspectives for research on compact quantum groups, since, as we show,
results and techniques from the theory of reflection groups and varieties of
groups (see Section 6.1.4) now can be applied to compact quantum groups.

There are three primary sources of compact quantum groups. Next to
g-deformations of compact Lie groups [122, 68, 186] and quantum isometry
groups [102] the third important class of compact quantum groups consists of
Banica’s and Speicher’s easy quantum groups [24]. Easy quantum groups are
defined by a combinatorial condition on their categories of representations, which
naturally connects them to Voiculescu’s free probability theory in Speicher’s
combinatorial setting. We explain this in detail later.

Our results give a concluding answer to the question whether the classification
of easy quantum groups is feasible. Embedding the lattice of varieties of groups
into the lattice of easy quantum groups, we show that a complete classification
of easy quantum groups is impossible. This fact gives a new direction to
the research in this field of mathematics by emphasising the need for global
structural results on the lattice of easy quantum groups and the need for search
of the most useful subclasses of easy quantum groups. We give results in both
directions, making use of new techniques that are available because of our work.

The combinatorial description, which categories of representations of easy
quantum groups satisfy by definition, goes by the name of categories of partitions.
We introduce the natural condition of a simplifiable easy quantum group and
the notion of a symmetric reflection group. Using these notations, our main
result can be stated as a commuting diagram of lattice isomorphisms and
anti-isomorphisms, respectively:

simplifiable > simplifiable
categories of easy quantum
partitions groups
symmetric
reflection

groups
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We give an explicit description of all arrows in this diagram in Section 6.6.1.

As mentioned before, quantum isometry groups are another source of compact
quantum groups. They are particularly interesting, as they constitute the natural
replacement for isometry groups of manifolds in Connes’ noncommutative
geometry. For example, they were calculated in the context of the standard
model of particle physics [31]. In general, however, the calculation of quantum
isometry groups poses a notoriously difficult problem. We describe the
isomorphism of lattices between simplifiable easy quantum and symmetric
reflection groups in terms of a quantum isometry group construction. This gives,
on the one hand, an explicit method for passing from a symmetric reflection
group to its associated easy quantum group. On the other hand, it solves the
problem of calculating the quantum isometry groups of a fairly large number
of quantum spaces, namely of the group C*-algebras of symmetric reflection
groups.

We now put the definition of easy quantum groups and our result in a historical
context. Let G be a (classical) Lie group and consider the C*-algebra C(G)
of continuous functions on GG. By means of the fundamental representation
u € C(G) ® M,,(C), we can view C(G) as a universal C*-algebra:

C(G) = C*(uij,1 < 4,j < n|the matrices (u;;) and (uf;)
are unitaries, w;;ur = UgUij, (Rg)) ,

where (R¢) are some further relations of the generators w;;. The liberation G*
of G is a compact quantum group given by the universal C*-algebra

C(G*) = C*(ugy, 1 <i,j < n
the matrices (u;;) and (uj;) are unitaries, (Rg))
where we omit the commutativity of the generators w;;.

Using this idea, Wang [230, 231] constructed three free quantum groups, namely
the free orthogonal O, the free unitary U;}", and the free symmetric quantum
group S;F, liberating the groups O, U, and S,,. A further example is the free
hyperoctahedral quantum group H," introduced by Banica, Bichon, and Collins
[13].

The intertwiner spaces of S, S;¥, O, O}, H,, and H; admit a combinatorial
description by means of partitions. The process of liberation is reflected by
restricting to those partitions that are non-crossing. In their 2009 article [24],
Banica and Speicher initiated a systematic study of easy quantum groups, i.e.
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of those compact quantum groups whose intertwiner spaces are described by the
combinatorics of categories of partitions (see Definition 6.3 of [24] or Definition
1.4 of [232]). This class of quantum groups includes S;', O}, and H,', as well
as the groups Sy, O, and H,, but it goes far beyond the question of liberation
of groups. Roughly speaking, it contains all compact quantum groups G with
S, € G c O;, whose intertwiner spaces “have a nice combinatorics”. It is a
consequence of the seminal work by Woronowicz [234] that the correspondence
between easy quantum groups and their categories of partitions is one-to-one.

The work on easy quantum groups has been continued by Banica, Bichon,
Curran, Skalski, Sottan, Speicher, Vergnioux, and the authors of the present
chapter in a couple of articles [25, 26, 17, 18, 182, 16, 14, 23]. They have three
aspects: firstly, easy quantum groups form a natural link between quantum
groups, combinatorics and free probability theory [129, 57, 58, 19]. Secondly,
they give rise to interesting operator algebras [218, 42, 91, 119]. Thirdly, the
approach of Banica and Speicher via easy quantum groups systematised the
study of free quantum groups in an accessible framework, which gives rise to a
large number of new examples of compact quantum groups. Amongst others, it
lead to the discovery of further examples of free quantum groups (see Theorem
3.16 of [24] and Corollary 2.10 of [232]). These free easy quantum groups
(also called free orthogonal quantum groups) and likewise the easy groups were
completely classified by Banica and Speicher [24], and by the second author
[232]. Furthermore, examples of half-liberated easy quantum groups were given
by Banica, Curran, Speicher, and the second author [24, 17, 232], and they
were completely classified in [232]. The half-liberation is given by replacing the
commutation relation
Uij Ukl = Uk Wij

by

UjjUkIUrs = UrsUkiUij ,
which can be interpreted as a slight weakening of commutativity.

It quickly turned out, that there are even more easy quantum groups than
the above mentioned — and in this chapter, we show that there are in fact
uncountably many and that they cannot be classified. While the classification
of non-hyperoctahedral easy quantum groups is complete [17, 232], the case
of hyperoctahedral easy quantum groups was still open. Hyperoctahedral
easy quantum groups are quantum subgroups of H; corresponding to
hyperoctahedral categories of partitions, i.e. categories which contain the
four block partition rrm (four points, which are all connected) but not the
double singleton 1 ® 1 (two points, which are not connected). See Section 6.1.2
for details on partitions and categories.
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We isolate a natural class of hyperoctahedral easy quantum groups — which we
call simplifiable — with the commutation relations

2 _ 2
uijukl = ukluij .

By this, the focus is put onto a quite unexplored class of partitions, and new
questions arise. The main feature of these quantum groups is that the squares of
the generators u;; commute, whereas the elements u;; itself behave rather like
free elements. This mixture of commutative and non-commutative structures
could play a special role in the understanding of non-commutative distributions.
In this context, our result that the lattice of varieties of groups embeds into the
lattice of simplifiable quantum groups can be interpreted as an indicator for
the fact that the latter offer a rich source of new phenomena in free probability
theory.

The technical heart of this chapter is worked out in Sections 6.2 and 6.3, where
we construct a map from simplifiable categories of partitions to subgroups of
Z%*. Given such a category C, we label the partitions in C according to their
block structure by letters aq,as,... in order to obtain words. Mapping these
words to Z5* (where now a? = e), we obtain the following main result:
Theorem 6.A (See Theorem 6.3.10). There is a lattice isomorphism between
stmplifiable categories of partitions and proper Sy-invariant subgroups of F,
where E is the subgroup of Z3* consisting of all words of even length.

Here, Sp is the subsemigroup of End(Z%*) generated by all inner automorphisms
and by finite identifications of letters. This way, we obtain a one-to-one
correspondence with a class of invariant subgroups of F,,, which contains
the lattice of fully characteristic subgroups of F,. This lattice in turn is
anti-isomorphic to the lattice of varieties of groups [144]. See Section 6.1.4 for
an introduction to varieties of groups and fully characteristic subgroups. By
Olshanskii [148], there are uncountably many varieties of groups. Hence, we
derive the following theorem.

Theorem 6.B (See Theorems 6.4.7, and 6.4.9). There is an injection of lattices
of varieties of groups into the lattice of easy quantum groups. In particular, there
are uncountably many easy quantum groups that are pairwise non-isomorphic.

We express the relation between Sp-invariant proper subgroups of F and their
associated simplifiable quantum groups by means of a quantum isometry group
construction. A quantum isometry group is the maximal quantum group acting
faithfully by isometries on a non-commutative space. It is the non-commutative
replacement of the isometry group. Quantum isometry groups were studied by
Bichon [34], Banica [10, 11], Goswami [102], Bhowmick and Goswami [33, 32],
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Banica and Skalski [20], Quaegebeur and Sabbe [180] and others. Banica
and Skalski first studied the quantum isometry groups of discrete group duals
n [22]. Other examples of such quantum isometry groups where studied by
Liszka-Dalecki and Soltan [132] and Tao and Qiu [203]. Notably, Banica and
Skalski related in [21] quantum isometry groups and easy quantum groups for
the first time.

If H is an Sp-invariant subgroup of Z5™, denote by (H ), the set of all words in

H that involve at most the first n letters of Z5°. Denote by H,[f] the maximal
simplifiable easy quantum group.

Theorem 6.C (See Theorems 6.6.3 and 6.6.6). If H < E < Z%” is a proper
So-invariant subgroup of E, then

HEFY 0 QISO(C*(Z5" /(H).))
is a simplifiable easy quantum group.

Vice versa, the diagonal subgroup of any simplifiable easy quantum group is of
the form Z3"/(H),, for some proper Sp-invariant subgroup H < E. Moreover,
these two operations are inverse to each other.

This correspondence in connection with Theorem 6.B, yields a large class of

examples of non-classical quantum isometry groups.

6.1 Preliminaries and notations

In the whole chapter, tensor products of C*-algebras are taken with respect to
the minimal C*-norm.

6.1.1 Compact quantum groups and compact matrix quan-
tum groups

In [236], Woronowicz defines a compact quantum group (CQG) as a unital
C*-algebra A with a unital *-homomorphism A : A — A ® A such that
e A is coassociative, i.e. (A®id)o A = (id® A)o A,

e (A,A) is bisimplifiable, i.e. the subspaces span A(A)(1 ® A) and
span A(A)(A®1) are dense in A® A.
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If (A,A) is a CQG, then A is called its comultiplication. Note that the
bisimplifiability condition is in fact an assumption on left and right cancellation
(see [236, Remark 3] or [205, Proof of Proposition 5.1.3]). All quantum groups in
this chapter are universal versions, meaning that it is as a C*-algebra isomorphic
to the universal enveloping C*-algebra of its polynomial subalgebra (see [205,
Chapter 5.4]). A morphism between two CQGs in their universal version A and
B is a unital *~homomorphism ¢ : A — B such that (¢ ® ¢) o Ay = Ap o ¢.
We say that A is a quantum subgroup of B if there is a surjective morphism
B — A, and they are isomorphic if there is a bijective morphism between them.

A unitary corepresentation matriz of A is a unitary element u € M, (A) such
that Aa(ui;) = X, uk @ uk; for all 1 <4, j < n.

The concept of CQGs evolved from compact matriz quantum group (CMQG),
[233, 235]. A compact matrix quantum group is a unital C*-algebra A with an
element u € M,,(A) such that

e A is generated by the entries of u,

o there is a *-homomorphism A : A — A®A such that A(u;;) = >, wi®@us;
forall 1 <4,j5 <n,

o u and its transpose u! are invertible.

Every CMQG gives rise to a CQG, but the former contains more information
— the choice of u. The matrix u is called the fundamental corepresentation
of (A,u) and it is a corepresentation matrix of (4,A). A CMQG (4,u) is a
universal version, if and only if A is the universal enveloping C*-algebra of
the *-algebra generated by the entries of u. A morphism between CMQGs in
their universal version A and B is a morphism of the underlying CQGs such
that (¢ ® id)(ua) is conjugate by a matrix in GL,(C) with up. If A and B
are CMQGs and there is a bijective morphism of CMQGs between them, we
say that they are similar. We say that two CMQGs are isomorphic if they are
isomorphic as CQGs.

6.1.2 Tannaka-Krein duality, easy quantum groups and cate-
gories of partitions

Woronowicz' Tannaka-Krein duality

If (A,A) is a CQG and v € M(#(H) ® A) lies in the multiplier algebra of
A (H)® A for some Hilbert space H, then u is a unitary corepresentation of A if
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u is a unitary and (Id® A)(u) = uiouiz. We used the leg notation: u12 = u ® 1,
u13 = (id ® ¥)(u ® 1), where X is the flip on AQA. A morphism between unitary
corepresentations v € M(# (H) ® A) and v € M (% (K) ® A) is a bounded
linear operator T' € B(H, K) such that (T®1)ou =vo (T ®1). A morphism
between two unitary corepresentations is also called an intertwiner. The space
of intertwiners between two unitary corepresentations v € A ® Z(H) and v €
AQ® AB(K) is denoted by Hom(u, v). With this structure, the finite dimensional
unitary corepresentations of a CQG (A4, A) form the concrete C*-category
UCorepg, (A), i.e. a C*-category with a faithful C*-functor UCorepg, — FdHilb
to the category of finite dimensional Hilbert spaces (see [234] for details). The
tensor product of two corepresentation v € Z(H) ® A and v € Z(K)® A is
defined by u ® v = u13v23. This tensor product induces the structure of a
concrete complete compact tensor C*-category in the sense of Woronowicz on
UCorepg, (A) (see [233, 234] or [205, Chapter 5]).

The fundamental corepresentation of a CMQG is a generator of its category of
finite dimensional corepresentations.

Theorem 6.1.1 (See Proposition 6.1.6 of [205]). If v is a unitary corepresen-
tation of a compact matriz quantum group (A,w), then there is k € N such that
v is a subobject of u®F.

Woronowicz proved the following version of Tannaka-Krein duality.

Theorem 6.1.2 (See [234]). Any concrete complete compact tensor C*-category
arises as the category of finite dimensional unitary corepresentations of some
compact quantum group. Two compact quantum groups A and B are isomorphic
if and only if their categories of corepresentations are equivalent over FdHilb.
If A and B are compact matriz quantum groups, they are similar if and only
if their categories of corepresentations are equivalent over FAHilb by a functor
preserving the isomorphism class of the fundamental corepresentation.

Categories of partitions

In order to describe corepresentation categories of quantum groups combinato-
rially, Banica and Speicher introduced the notions of a category of partitions
and of easy quantum groups [24]. A partition p is given by k upper points and [
lower points which may be connected by lines. By this, the set of k& + [ points
is partitioned into several blocks. We write a partition as a diagram in the
following way:
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k upper points and
[ lower points.

Two examples of such partitions are the following diagrams.

sl

In the first example, all four points are connected, and the partition consists only
of one block. In the second example, the left upper point and the right lower
point are connected, whereas neither of the two remaining points is connected
to any other point.

The set of partitions on k upper and [ lower points is denoted by P(k,1), and
the set of all partitions is denoted by P. A partition p € P(k,l) is called
non-crossing, if it can be drawn in such a way that none of its lines cross.

A few partitions play a special role, and they are listed here:

o The singleton partition 1 is the partition in P(0, 1) on a single lower point.

e The double singleton partition 1 ® 1 is the partition in P(0,2) on two
non-connected lower points.

e The pair partition (also called duality partition) m is the partition in
P(0,2) on two connected lower points.

o The unit partition (also called identity partition) | is the partition in
P(1,1) connecting one upper with one lower point.

o The four block partition rrm is the partition in P(0,4) connecting four
lower points.

e The s-mizing partition hs is the partition in P(0,2s) for s € N given by
two blocks connecting the 2s points in an alternating way:

| A I
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e The crossing partition (also called symmetry partition) X is the partition
in P(2,2) connecting the upper left with the lower right point, as well as
the upper right point with the lower left one. It is the partition of two
crossing pair partitions.

e The half-liberating partition X is the partition in P(3,3) given by the
blocks {1,3'}, {2,2'} and {3,1’} connecting three upper points 1, 2,3 and
three lower points 1/,2’, 3" such that 1 and 3’ are connected, 2 and 2, and
finally 3 and 1'.

Further partitions will be introduced in Section 6.2.2.

We will also use labelled partitions, i.e. partitions whose points are either labelled
by numbers or by letters. The labelling of a partition p € P(k,l) with letters is
usually proceeded by starting at the very left of the k& upper points of p and
then going clockwise, ending at the very left of the [ lower points. The labelling
with numbers typically labels both the upper and the lower row of points from
left to right.

There are the natural operations tensor product (p ® q), composition (pq),
involution (p*) and rotation on partitions (see [24, Definition 1.8] or [232,
Definition 1.4]). A collection C of subsets D(k,l) c P(k,l), k,1 € N is called a
category of partitions if it is closed under these operations and if it contains
the pair partition m, and the unit partition | (see [24, Definition 6.1] or [232,
Definition 1.4]).

A category of partitions C is called hyperoctahedral if the four block rmm is in
C, but the double singleton 1 ® 1 is not in C.

Given a partition p € P(k,l) and two multi-indices (i1, ...,x), (j1,---,Jj1), we
can label the diagram of p with these numbers (now, the upper and the lower
row both are labelled from left to right, respectively) and we put

5, (i, 7) = 1 if p connects only equal indices,
P\t J 0 if there is a string of p connecting unequal indices .

For every n € N, there is a map T, : (C")®* — (C™)® associated with p, which
is given by
Tyen ® @)= Y 6,(0) 05 @ @ey.
1<, qisn
Definition 6.1.3 (Definition 6.1 of [24] or Definition 2.1 of [17]). A compact

matrix quantum group (A, u) is called easy, if there is a category of partitions
C given by D(k,l) c P(k,1), for all k,1 € N such that

Hom(u®* u®') = span{T}, |p € D(k,1)}.



PRELIMINARIES AND NOTATIONS 159

Combining Theorems 6.1.1 and 6.1.2, we obtain the following theorem, which is
the basis of all combinatorial investigation on easy quantum groups.

Theorem 6.1.4 (See [24]). There is a bijection between categories of partitions
and easy quantum groups up to similarity.

Thus, easy quantum groups are completely determined by their categories of
partitions.

6.1.3 Quantum isometry groups

Given a discrete group G with finite generating set S © G and associated
word-length function I : G — N, I(g) = min{n € N|3s1,...,s, € S : g =
$1++*Sp}, we obtain a quantum isometry group of C}  (G) along the lines of

[20]. We denote by u, the canonical unitary of Cj .. (G) associated with g € G.

max

Definition 6.1.5 (Definitions 2.5 and Section 4 of [20]). Let (A, u = (ust)s tes)
be a compact matrix quantum group and write Pol(A) for its polynomial algebra
# — alg(ug | s, € S). An action o : C¥_ (G) —» Ck_ (G)® A on Ck . (G) is

max max max
faithful and isometric with respect to [, if

o a(L,) c L, ®Pol(A) for all n e N, where L,, = span{u, |l(g) = n} and
o afug) = Deq U @uys for all se S.

Theorem 6.1.6 (Theorems 2.7 and 4.5 of [20]). There is a mazimal compact
matriz quantum group (A, u) acting faithfully and isometrically with respect to
l on Ci..(G). That is, for any other compact matriz quantum group (B,v)
acting faithfully and isometrically with respect to | on C_ (G) there is a unique
morphism of CMQGSs ¢ : (A,u) — (B,v) such that ¢(u) = v.

max

6.1.4 Varieties of groups

In this section we briefly explain the concepts of varieties of groups. We advice
the interested reader to consult [144] for a thorough introduction.

Consider F., with free basis x1,22,... and let w € F. be a word in the
letters x1,xs,...x,. We say that the identical relation w holds in a group
G if for any choice of elements g1, g, ... 9, € G, replacing z; by g;, we have
w(g1,-..,9n) = lg. Following [144] a variety of groups V is a class of groups
for which there is a set of words R < [, such that every group G in V satisfies
the identical relations in R.
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Let us give some examples of varieties of groups.

Example 6.1.7. The following classes of groups are varieties of groups. We
also describe the identical relations that characterise them.

1. The class of all groups is the variety of groups, where no law is satisfied.

2. The class of abelian groups is defined by the commutator [z,y] =

xyx_ly_l.

3. The class of groups with a fixed exponent s is given by x°.

4. The class of nilpotent groups of class 2 is described by [[z,y], z].

Varieties of groups are important for this work, because they correspond precisely
to the fully characteristic subgroups of F,. Given an inclusion of groups H < G,
H is fully characteristic in G, if it is invariant under all endomorphisms of G.
This means that ¢(H) < H for every endomorphism ¢ € End(G).

The set of identical relations that hold in a given group, form a subgroup of
F ... This observation is the trigger to prove the following theorem.

Theorem 6.1.8 (See [143] or Theorem 14.31 in [144]). There is a lattice
anti-isomorphism between varieties of groups and fully characteristic subgroups
of F . sending a variety of groups to the set of all identical relations that hold
in .

We will make use of another observation concerning elements of free groups.
Two sets of words in [F,, are called equivalent, if they generate the same fully
characteristic subgroup.

Theorem 6.1.9 (See Theorem 12.12 in [144)). Every word w € F,,, n € Nu {0}
s equivalent to a pair of words a and b in F,,, where a is of the form x™ for
some m = 2 and x € F,,, and b is an element of the commutator subgroup

[Fn, Fr]

6.2 Simplifiable hyperoctahedral categories

6.2.1 A short review of the classification of easy quantum
groups

Recall from Section 6.1.2 that a category of partitions is called hyperoctahedral,
if it contains the four block partition rmm but not the partition { ® 1. An easy
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quantum group G is called hyperoctahedral, if its corresponding category of
partitions is hyperoctahedral. By [17, Theorem 6.5] and [232, Corollary 4.11]
we know that there are exactly 13 non-hyperoctahedral easy quantum groups,
resp. 13 non-hyperoctahedral categories of partitions, so they are completely
classified. We will shed some light on the classification of hyperoctahedral
categories. Let us first give a short review of the classification of easy quantum
groups.

For partitions p1,...,p, € P, we write C = (p1,...,p,y for the category
generated by these partitions, i.e. C is the smallest subclass of P which is
closed under the category operations (see Section 6.1.2) and which contains the
partitions pq,...,p,. (Note that the pair partition m and the unit partition |
are always contained in a category as trivial base cases.)

By [24, Theorem 3.16] and [232, Corollary 2.10], there are exactly seven free
easy quantum groups (also called free orthogonal quantum groups), namely:

B;f c B" c B+t c O,
U u U
+ 1+ +

Sy c Sy c H .

The corresponding seven categories of partitions are described as follows.

®Ho2 army - o 4en o @H=NG
n n n
My =NC o At > ().

Note that these partitions are all non-crossing, i.e. all of these seven categories
are subclasses of NC', the collection of all non-crossing partitions. We denote
by NC5 the category of all non-crossing pair partitions. Furthermore, note
that only {rrm) is a hyperoctahedral category, the category corresponding to
the hyperoctahedral quantum group H; by [13]. The other six categories are
non-hyperoctahedral.

Besides the non-crossing categories, there are many categories which contain
partitions that have some crossing lines. The most prominent partition which
involves a crossing is the crossing partition (also called symmetry partition) X
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in P(2,2). Every category containing the crossing partition corresponds to a
group. By [24, Theorem 2.8] we know that there are exactly six easy groups.

U U U
S, c S c H,.

Accordingly, there are exactly six categories of partitions containing the crossing
partition X.

a&n > &ret o =P

n n n

<><7T7'_'_'_‘>: P > <X7T®T»’_'_'_‘> > <X7 '_'_'_‘>

Note that on the level of categories containing the crossing partition, the
two categories {},1T71) and {),T ® 1) coincide. Furthermore, amongst the
above categories only (X, rmm) is hyperoctahedral; the other five categories are
non-hyperoctahedral.

Half-liberated easy quantum groups were introduced in [24] and [17]. They
correspond to categories containing the half-liberating partition X but not the
crossing partition X. By [232, Theorem 4.13], there are exactly the following
half-liberated easy quantum groups, containing the hyperoctahedral series H,(Ls),
s = 3 of [17, Definition 3.1].

B#* c o}
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The corresponding categories of partitions are described as follows.

KTen > X

n

K,

n

K, k).

Here, (X, rrm) and (X, rrm, hsy are hyperoctahedral, for all s > 3. The
categories (X,T ® 1) and {X) in turn are two more non-hyperoctahedral
categories, completing the list of 13 non-hyperoctahedral categories.

We conclude that the only class of categories which ought to be classified is the
one of hyperoctahedral categories, as illustrated by the following picture.

My o> Jehmmy > ()
n
n ?
? n
§hmmy =P K1&1,mm) > .

The question is to find all categories C of partitions, which contain the four
block rmm but not the double singleton T ® 1. Furthermore, we can restrict
to those categories which do not contain the half-liberating partition X. The
higher hyperoctahedral series H,[f], s€{3,4,...,00} of [17, Section 4] fall into
this class. They are given by the categories {rrmi, hs).

6.2.2 Base cases in the class of hyperoctahedral categories

By definition, the category {rrm) is a natural base case in the class of
hyperoctahedral categories, but we will see that also other categories serve
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as base cases for interesting subclasses of hyperoctahedral categories. For this,
we introduce two more partitions.

Definition 6.2.1. The fat crossing partition ::%':J‘ is the following partition in
P(4,4), connecting the upper points 1 and 2 with the lower points 3’ and 4/,
as well as the upper points 3 and 4 with the lower points 1’ and 2/, i.e. -

el
consists of two crossing four blocks.

1 2 3 4

1720 3 4

Note that any category C containing the fat crossing, also contains the four
block partition (see also Lemma 6.2.4). If furthermore T ® 1¢ C, then C is
hyperoctahedral. The converse is also true: Any hyperoctahedral category
(apart from {rTm)) contains the fat crossing (see Proposition 6.2.12).

Definition 6.2.2. The pair positioner partition YW is the following partition
in P(3,3), consisting of a four block on 1, 2, 2’ and 3’ and a pair on 3 and 1'.

1/ 2/ 3/

Remark 6.2.3. In [17, Lemma 4.2] the following partitions k; € P(l + 2,1 + 2)
for [ € N were used to define the higher hyperoctahedral series g (see also [232]
for a definition of k;). They are given by a four block on {1,1’,1 + 2, (I + 2)'}
and pairs on {i,i'} for ¢ = 2,...,0l + 1. The following picture illustrates the
partition k; — note that the waved line from 1’ to [ + 2 is not connected to the
lines from 2 to 2/, from 3 to 3’ etc.
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1 2 3 l+11+2
|
|

]

23 (141 (+2)

We check that k; is in a category C if and only if all k; are in C for all [ € N
(apply the pair partition to k;®¥k to obtain k;,1). The pair positioner partition
LY is a rotated version of kq, thus Wme C if and only if k1 € C. Furthermore,
{H4-) corresponds to a7 of [17].

The fat crossing partition :j%':: can be constructed out of the pair positioner
partition Y using the category operations. The following lemma shows some
relations between the partitions.

Lemma 6.2.4. The following partitions may be generated inside the following
categories using the category operations.

(i) e (550
(ii) o€ (-
(iii) “e (hsy for all s = 3.
(iv) Yame X, ).
Proof. (i) We obtain rmm as the composition of #xﬁ, |® M ® | and m.

(ii) Compose the tensor product rrm & rrm with Y4+ in the following way:
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RERREEE

X

Then use rotation to obtain :j%'::

(iii) We construct the rotated version k; of Y using hs ® |®3 and its rotated
version:

a b a
T T g
\J...LJﬂi
a b a

(iv) The partition ‘:e P(2,2) is a rotated version of the four block rmm. Compose
t:: ®| with the half-liberated partition X to obtain L. O

The pair positioner partition W plays an important role in the sequel. By
the preceding lemma, we see that any category C containing the pair positioner
partition M/~ also contains the four block partition rrm. Thus, these categories
form a subclass of the hyperoctahedral categories.

Definition 6.2.5. A category of partitions is called simplifiable if it contains
the pair positioner partition Y4~ but not the double singleton 1 ® 1.



SIMPLIFIABLE HYPEROCTAHEDRAL CATEGORIES 167

Note that every simplifiable category is also hyperoctahedral. Simplifiable
categories carry a nice feature — they can be described by very simplified
partitions. This is the content of Lemma 6.2.7. We first prove a lemma on the
block structure of partitions in simplifiable categories.

Lemma 6.2.6. Let C be any category of partitions, and let p € C.

(a) If C contains the four block partition rrm, we can connect neighbouring
blocks of p inside of C, i.e. the partition p’ obtained from p by connecting
two blocks of p which have at least two neighbouring points is again in C.

(b) If C contains the pair positioner partition Y, we can connect arbitrary
blocks of p inside of C, i.e. the partition p’ obtained from p by combining
two arbitrary blocks of p is again in C.

Proof. We may assume that p has no upper points, by rotation.
(a) We can compose p with [¥9® E ®|®? for suitable a and 3.

(b) By composition, we insert a pair partition m next to the block b; of p. By
(a), we can connect it to b;. Using the pair positioner partition Y, we can
shift these two points next to the block bs. Again by (a), we connect it to bs.
This yields a partition in which the blocks b; and by are connected. Capping
this partition with the pair partition erases the two auxiliary points and yields
the desired partition in C. O

Let p € P(0,1) be a partition with k£ blocks. We may view p as a word in k
letters aq, ..., a corresponding to the points connected by the partition p:

ko k En
p= ai(ll)aifz) Oy -
Here a;(;y # aij41) for j = 1,...,n — 1 and k; € N. For example, the four
block partition rrm corresponds to the word a*, (a rotated version of) the pair
positioner partition W corresponds to ab®ab?, and the double singleton 1 ® 1
corresponds to ab. Conversely, every word af(ll)afé) e af("n) of length [ yields a

partition p € P(0,1) connecting nothing but equal letters of the word.

For technical reasons, we introduce the empty partition & € P(0,0) which is by
definition in any category of partitions C.

Lemma 6.2.7. Let C be a category of partitions. Let p € P(0,1) be a partition,

seen as the word p = af(ll)afé) iy

1 if k; is odd

. . )
2 if k; is even

P A K,
and p' = ai(ll)aié) Oyl

(a) We put k) = {
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If C contains the four block partition mrm, then p € C if and only if p' € C.

1 if k; is odd K k! K"
b) Weputk” := J ,andp” = a. a2y ...a. . It is possible
(b) Weput 5 {0 i by s oven” TS il ity P
that p" = .
If C contains the pair positioner partition Y, then p € C if and only if
p"eC.

Proof. (a) If k; > 3, we compose p with the pair partition to erase two of the
neighbouring a,(;)-points. Since this operation can be done iteratively and
inside the category C, we infer that p’ € C whenever p € C. For the converse, we
compose p’ with [9¢ ® m ® |® for suitable a, 3, such that the pair is situated
right beside one of the a;(;)-points of p’. By Lemma 6.2.6(a), we can connect
these two points to the block to which a;(; belongs, which yields a partition p’
where the power k; of a;(;y is increased by two. By this procedure, we construct
p out of p’ inside the category C.

(b) Assume first that p” # . If p € C, then p” € C again by using the pair
partition M. For the converse, insert pair partitions m at every position in p”
where kj = 0. By Lemma 6.2.6(b), we can connect these pairs to the according
blocks of p” such that we obtain a partition p’ as in (a). Since the four block
T is in C (see Lemma 6.2.4), we conclude p € C using (a).

Secondly, if p” = &, then all exponents k; of p are even. All interval partitions
qg=q ®...® gm, where every partition g; consists of a single block of even
length respectively, are in C. Using the fat crossing partition :j%':: (which is in
C by Lemma 6.2.4), the partition p may be obtained from a suitable interval
partition ¢, by composition. Thus, p € C. O

Lemma 6.2.7(b) will be crucial for the study of simplifiable quantum groups in
the sequel.
Remark 6.2.8. Lemma 6.2.7 can be extended to arbitrary partitions p € P(k, 1),

by rotation.

In simplifiable categories, we have a notion of equivalence of partitions according
to Lemma 6.2.7(b).

Definition 6.2.9. Two partitions p, ¢ are called equivalent, if ¢ can be obtained
from p by the following operations:

o Elimination of two consecutive points belonging to the same block.
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e Insertion of two consecutive points into the partition at any position and
either connecting it to any other block — or not.

Example 6.2.10. Both of the following partitions

| | | ]

are equivalent to the rotation of the half-liberating partition:

| |

Lemma 6.2.11. Let C be a simplifiable category and p € C. Let q be a partition
that is equivalent to p. Then q € C.

Proof. See Lemma 6.2.7(b). O

The category (/) is the base case for the simplifiable categories of partitions,
i.e. it is contained in all simplifiable categories. We show now that the category
<::'|><ﬁ> is a base case for all hyperoctahedral categories that contain at least one
crossing partition.

Proposition 6.2.12. Let C be a hyperoctahedral category of partitions with
C # {rrm). Then the fat crossing partition #xﬁ s in C.

Proof. We show that one of the following cases hold for C:

LI
. '_|><’_|€ C.

. ‘—}L,—|€C.

e hg €C for some s > 3.

By Lemma 6.2.4 this will complete the proof.

The only hyperoctahedral category of non-crossing partitions is {rrm). Thus, C
contains a partition p € P\NC with a crossing. We may assume that p consists
only of two blocks by and bo, after connecting all other blocks with one of the
crossing blocks, using Lemma 6.2.6(a). Furthermore, we may assume that no
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three points in a row are connected by one of the blocks, by Lemma 6.2.7(a).
Hence, we may write p as

p = aFpFakepke | gFn or p = aF1bF2akspks | phn

where k; € {1,2} and n > 4, and a and b correspond to the points connected by
the blocks by resp. bs. Note that the length of p is even (otherwise we could
construct the singleton 1 using the pair partition).

If all k; = 1, then p = h, for some s > 2 — the case p = ho implying all other
cases of the claim. Otherwise, we may assume k; = 2 by rotation. If n > 5, we
may erase the two points a® using the pair partition and we obtain a partition
p’ € C which still has a crossing. Iterating this procedure, we either end up with
a partition hy for some s > 2 or with a partition p € C such that k; = 2 and
n = 4. In the latter case, p is of length six or eight. There are exactly four
cases of such a partition:

e p = aababb — An application of the pair partition would yield T ® 7€ C
which is a contradiction.

o p = aabaab — This is a rotated version of L.

e p = aabbab — Again this would yield T ® 1€ C.

e p = aabbaabb — This is :::xﬁ in a rotated version.

O

Remark 6.2.13. Since <:j%::> contains a crossing partition, we have {(rrm) &
<::'|><ﬁ> Furthermore, we have <#xﬁ> c {4+ by Lemma 6.2.4. For the proof of
<:j'ﬁﬂ> # (U)> we refer to Section 6.5.

6.2.3 The single leg form of a partition

The pair positioner partition W allows us to simplify the classification problem,
since we can reduce to partitions of a nicer form.

Definition 6.2.14. A partition p € P is in single leg form, if p is — as a word —
of the form

P = Gi1)ai2) - - - Qi(n) »
where a;(;) # a;(j41) for j =1,...,n — 1. The letters ay, ..., ax correspond to

the points connected by the partition p. In other words, in a partition in single
leg form no two consecutive points belong to the same block.
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Let C be a category of partitions (or simply a set of partitions). We denote
by Cs; the set of all partitions p € C in single leg form. By Py, we denote the
collection of all partitions in single leg form.

Lemma 6.2.15. Let C be a hyperoctahedral category and let p € Cg be a
partition in single leg form. Then, every letter in the word p appears at least
twice. Furthermore, every word in Cg consists of at least two letters, it has
length at least four, and it is of even length.

Proof. The double singleton 1T ® 1 is not contained in C. O
If p e P(0,1) is a partition seen as the word p = af(ll)afé) e af{‘n), the partition

P’ = af(llll)afé) . a’?’l’;) of Lemma 6.2.7(b) is not necessarily in single leg form,

1
e.g. p = ab’acacaca yields p” = a*cacaca. However, a finite iteration of the
procedure as in Lemma 6.2.7(b) either yields a partition ¢ in single leg form or
the empty partition & € P(0,0). This partition ¢ (possibly the empty partition)
is called the simplified partition associated to p. Note that every partition has a
unique simplified partition — the converse is not true. We can state a variation

of Lemma 6.2.7(b).

Lemma 6.2.16. Let C be a simplifiable category of partitions. Then, a partition
is in C if and only if its simplified partition is in C.

Remark 6.2.17. Every partition p € P is equivalent to its simplified partition
p” € P in single leg form and two partitions are equivalent if and only if their
simplified partitions agree. If p € P is in single leg form, then the simplified
partition associated to p is p itself.

The set Cq turns out to be a complete invariant for the simplifiable categories.

Proposition 6.2.18. Let C and D be simplifiable categories.

(a) The category {Cs;, Y coincides with C.
(b) We have Cs; = Dy if and only if C = D.
(¢) We have Cg; € Dy if and only if C € D.
Proof. (a) We have (Cg;, Y1) = C. On the other hand, if p € C, we consider its

associated simplified partition p” € C by Lemma 6.2.16. Thus, p” € {Cs;, Zi).
Again by Lemma 6.2.16, we also have p € {Cy;, Z). O

As a consequence, we can choose the generators of a simplifiable category always
to be in single leg form. In the sequel, we will classify the subclass of simplifiable
easy quantum groups by classifying the sets Cg;.
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6.3 A group theoretic framework for hyperoctahe-
dral categories of partitions

Denote by L = {aj,aq, ...} an infinite countable number of letters. Let p be a
partition with n blocks and choose a labelling I = (a;(1), @i(2); - - - , @i(n)) Of the
blocks of p with pairwise different letters. Denote by w(p,!) the word of Fp,
obtained by considering p as a word with letters given by [ starting in the top
left corner of p and going around clockwise. Note that mutually different blocks
are labelled by mutually different letters. We write G = Z4% for the infinite
free product of the cyclic group of order 2 indexed by the letters in L. The
canonical surjection F; — G is denoted by .

The next observation describes the basic link between partitions and elements

of G.

Lemma 6.3.1. (i) Two partitions p and q are equivalent, if and only if
m(w(p, 1)) = w(w(q,l")) for some labellings | and l'.

(ii) Let C be a simplifiable category of partitions, and let p € C with w(w(p,1)) #
e (where e denotes the neutral element in G). Then there is a partition
& # q € C in single leg form and a labelling I such that w(w(q,l")) =

m(w(p,1))-

Proof. (i) This follows from the fact, that two words w and v in F have the
same image under 7 if and only if there is a sequence wy, ..., w, with w; = w
and w, = v such that w;, arises from w; by inserting or deleting a square of a
letter in L.

(ii) The simplified partition p” associated to p is in C by Lemma 6.2.16. By (i)
and Remark 6.2.17 we get the result. Note that p” # & since w(w(p,l)) #e. O

Definition 6.3.2. Let C be a simplifiable category of partitions. We denote
by F(C) the subset of G formed by all elements 7(w(p,!)) where p € C and [
runs through all possible labelling of p with letters a1, as,. ...

Denote by P(X) the power set of a set X. We consider the commutative
diagram

P(Fr) = P(G)
w1l w’
P(P) = P(Py),

where the maps are given as follows:
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e The map 7 is induced by the group homomorphism 7 : F;, — G, so
7(A) :={n(z) e Glr e A} for Ac [Fp.

e The map w is given by the above labelling of a partition with any possible
choice of letters in [, thus for a subset A c P of partitions, we have

w(A) ={w(p,l) € Frlpe Al = (as1), ai(2), - - - » Ui(n))
a labelling with pairwise different letters} .

Note that we only use the generators a; of F; as letters and not their
inverses a;l.

e The map R is given by simplification of partitions. To a partition p € P,
we assign its simplified partition p” € Py, which is possibly the empty
partition. Hence

R(A) = {p" € Py | p" is the simplified partition of a partition p € A}.
If C is a simplifiable category, then R(C) = Cg.
e The map w’ is given by the labelling of partitions p in single leg form

with any possible choice of letters in G, analogous to the map w.

We observe, that the procedure R of simplifying partitions to single leg partitions
corresponds to the group homomorphism 7, resp. to #. Furthermore, if C is
a simplifiable category and m(w(p,)) # e is an element in 7 o w(C) for some
partition p € C with some labelling [, we may always assume that p is in single
leg form. (See Lemma 6.3.1)

We are going to study the structure of (7 o w)(C) for a simplifiable category of
partitions C. For this, we translate the category operations to operations in [,
resp. in G.

Lemma 6.3.3. Let C be a simplifiable category of partitions. Then:
(i) If the word g = by ... by is in w(C), then the reverse word ¢’ = by, ...by is
in w(C).
(i) If g,h € w(C), then gh € w(C).
(iii) (7 ow)(C) c G is a subgroup of G.

Proof. (i) Let g = w(p,!) for some partition p € C and some labelling . Thus,
w(p,l) is the word given by labelling the partition p starting in the top left
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corner and going around clockwise. Since C is a category, the partition p* is in
C, given by turning p upside down. Labelling p* with the letters from [ starting
in the lower left corner and going counterclockwise yields the reverse word
g = w(p*,I*). Here, I* = (a;(n),---,0a;1)) denotes the labelling of a partition
in an order reverse to the one of the labelling . Thus, ¢’ € w(C).

(ii) Let g = w(p,1) and h = w(q,l'), where p,q € C, I = (a;(1,-- -, Gi(n)), and
' = (aj(1), - - - ajim))- By rotation, we may assume that p and g are partitions
with no lower points. If all letters of [ and I’ are pairwise different, then
gh = w(p®gq,1l’), where [l' is the labelling Il = (a;q1), - -, @i(n), @5(1)5 - - - CGji(m))-
Otherwise, denote by M the set of all pairs (a, 8) in {1,...n} x {1,...m} such
that i(a) = j(8). Then gh is obtained from the labelled partition that is
constructed by the following:

¢ Consider the tensor product p ® g,
o label this partition with the letters a;1), ... aywx), aj1), - - - @),

e now for every (a, ) € M join the a-th block of p with the S-th block of g.

The resulting partition r is in C (by Lemma 6.2.6(b)) and gh = w(r,1”) with
the above labelling 1”.

(iii) If m(g) € * o w(C) for g € w(C), then 7(g)~! = n(¢') € # ow(C) by (i). By
(ii) 7 o w(C) is closed under taking products. O

Definition 6.3.4. We denote by F' the restriction of © o w to the set of all
simplifiable categories of partitions as a map with image in the subgroups of G.

This map F transfers the problem of classifying the simplifiable categories of
partitions to a problem in group theory.

6.3.1 The correspondence between simplifiable categories and
subgroups of 73

We will give a description of the image of F' in terms of subgroups of G = Z#%
that are invariant under certain endomorphisms. This is the content of Theorem
6.3.10. Let us prepare its formulation.

Definition 6.3.5. Let Sy be the subsemigroup of End(G) generated by the
following endomorphisms.
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1. Finite identifications of letters, i.e. for any n € N and any choice of indices
i(1),...,i(n) the map

Qe > Qi(k) 1<k<n,
ar — ag k>n.

2. Conjugation by any letter ay, i.e. the map w — ay - w - a.

Definition 6.3.6. Denote by E the subgroup of G consisting of all words of
even length.

Proper Sp-invariant subgroups of G and E are described in the following lemma.

Lemma 6.3.7. E is the unique mazimal proper Sp-invariant subgroup of G.
Furthermore, every proper Sp-invariant subgroup of E contains only words in
which every letter ay,as, ... appears not at all or at least twice. (Note that in
E itself, there are words where a letter appears only once.)

Proof. Firstly, note that E has index 2 in G, so it is a maximal proper subgroup
of G. Secondly, it is Sp-invariant. Now, if an Sp-invariant subgroup H < G
contains a word with an odd number of letters, say 2n + 1, we may use the
identification of letters from Definition 6.3.5(i) in order to obtain a; = a3"** € H.
With ay € H, it follows that a; € H for all ¢+ and hence H = G.

Let H < F be an Sp-invariant subgroup and assume that there exists an element
w € H where w contains a letter a; only once. Using identification of letters,
we may assume that ¢ = 1 and all other letters are the same, say az. We obtain
araz € H or asa; € H, thus a;a; € H for all ,j. Now let w € E be arbitrary.
We can write

W = A(1)A5(2) * " Q4(2n) = (%(1)%(2))(%(3)%(4)) T (ai(anl)ai(Qn)) €EH,

for some indices i(1),4(2),...,i(2n). So H = E and we have finished the
proof. O

Lemma 6.3.8. For any simplifiable category of partitions C, F(C) is a proper
So-invariant subgroup of E.

So F is a well-defined map from simplifiable categories of partitions to proper

So-invariant subgroups of E. Moreover, F is a lattice homomorphism.

Proof. By Lemma 6.3.3 F(C) is a subgroup of G. Since all partitions in C are
of even length, F'(C) is a subgroup of E.
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Assume that F(C) = E. Then F(C) contains an element in which some letter
appears only once. Hence, in C there is a partition with a singleton. Thus C is
not hyperoctahedral, which is a contradiction. We have shown that F(C) is a
proper subgroup of F.

We show that F'(C) is invariant under the generating endomorphisms of Sy in
Definition 6.3.5. Let g = w(w(p,1)) be an element in F(C) constructed from a
partition p € C. It is clear that we can change a letter in g, if the new letter did
not appear in g before — this simply corresponds to m(w(p,!’)) with a different
labelling ’. If the new letter already appeared in g, we connect two blocks of
p using Lemma 6.2.6. This shows that F(C) is closed under identification of
letters.

Furthermore, F/(C) is closed under conjugation with a letter ay. Indeed, let
e# g=m(w(p,l)) = ajq)- .. ajm) be an element in F(C). Assume that p is a
partition in single leg form with no lower points (see Lemma 6.3.1). If the letter
ay, does not appear in the word a;(y) . .. @;(m,), we consider the partition

i.e. the partition obtained from p by nesting it into a pair partition m. Labelling
this partition with I’ = (ag,a;(1),.-,a;m)) for I = (ajaq),...,a@)) yields
argar = m(w(p',1')) in F(C). On the other hand, if the letter ay appears in the
word aj(1) - - - @j(m), We have four cases.

o Ifi(1) # k and i(m) # k, we connect the outer pair partition of p’ with
the block of p which corresponds to the letter ay (see Lemma 6.2.6). The
resulting partition p” yields arxgar = w(w(p”,1"”)) in F(C) for a suitable
labelling 1”.

o If i(1) # k and i(m) = k, the element apgay is given by apgar =
Qi(m)@i(1) - - - Gi(m—1) (as a2 = e). Therefore, we consider the labelled
partition p in a rotated version, which yields aigar € F(C). Likewise in
the case i(1) = k and i(m) # k.

o If i(1) = k and i(m) = k, the element apgay equals a;(a) ... a;m—1)-
On the other hand, the very left point and the very right point of p
belong to the same block, so, rotating one of them next to the other and
erasing them using the pair partition yields a partition p” € C such that
argar = m(w(p”,1")) for a suitable labelling 1”.
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Finally note that, since 7 o w preserves inclusions, its restriction F' is a lattice
homomorphism. O

The preceding lemma specifies that we can associate an Sy-invariant subgroup
F(C) of E to any simplifiable category C of partitions — but we can also go back.
In fact, every proper Sy-invariant subgroup of E comes from such a category.
This is worked out in the sequel.

Lemma 6.3.9. For any proper Sp-invariant subgroup H of E, the set

Cr :=w Yn '(H))
= {p € P|there is a labelling [ such that 7(w(p,l)) e H} c P

1s a simplifiable category of partitions.

Proof. The pair partition m, the unit partition |, the four block partition rrm,
and the pair positioner partition W4+ are all in Cpy, since they are mapped to
the neutral element e € H for any labelling I.

Let p and ¢ be partitions in Cy and denote by ¢ := w(w(p,!)) and h := w(w(q,!’))
some corresponding elements in H for some labellings | and I’. Since H is
invariant under permutation of letters we can assume that the labellings [ and
" are such that g and h do not share any letter. The element g may be written
as g = g1go2, where g; corresponds to the labelling of the upper points of p, and
g2 to the lower points of p. Consider the tensor product p ® g of p and ¢ as
labelled partitions, i.e. we form p ® ¢ and label it by a labelling ” such that
the subpartition p in p ® ¢ is labelled by [ and the subpartition ¢ is labelled
by I’. Then, the element 7(w(p ® ¢,1")) is of the form g1hgs. (Recall that the
labelling procedure starts at the upper left point of a partition and goes around
clockwise — thus, in p ® g the upper points of p are labelled first, then the whole
of ¢ is labelled, and we finish by labelling the lower points of p.) As H is closed
under conjugation, the element glhgl_1 isin H, so is g1hgs = glhgl_lg. Hence,
p®q e Cy, and Cy is closed under tensor products.

The set Cp is also closed under involution, since for p € Cy with 7(w(p,l)) =
g € H, we have 7(w(p*,1*)) = g~ ! € H, where [* denotes the labelling [ in
reverse order. It is also closed under rotation, since moving points (from above
to below or the converse) at the right hand side of a partition p does not change
the labelling — and hence w(w(p,!)) is invariant under this operation. Moving
points at the left hand side of p is reflected by conjugating m(w(p,1)) with the
first respectively with the last letter of this word.



178 A CONNECTION BETWEEN EASY QUANTUM GROUPS, VARIETIES OF GROUPS AND
REFLECTION GROUPS

It remains to show that Cpg is closed under the composition of partitions. We
first show that Cy is closed under composition with a partition of the form

Let p € Cy be a partition on k£ upper points and m lower points and consider
the partition ||---|U||---| on m upper points and m — 2 lower points, where
L connects the i-th and the (i + 1)-st point. Denote their composition by p’.
There is a labelling ! such that g := w(w(p,1)) is in H. For a suitable labelling
', the element 7(w(p’,!')) arises from g by identifying the (k + i)-th and the
(k + i+ 1)-st letter. Since H is invariant under this operation, the partition p’
is in CH.

It remains to reduce the composition of arbitrary partitions to the previous
case. Let p € Cy be a partition on k upper and [ lower points, and let g € Cy be
on | upper and m lower points. Write p’ and ¢’ for the partitions arising from
p and ¢, respectively, by rotating their lower points to the right of the upper
points. Then p’ and ¢’ are both in Cy. Composing p’ ® ¢’ with the partition

- k strings on the left,
I pair partitions nested into

each other, and m strings on
the right

yields a partition p” € Cg on k + m points. Rotating m points on the right of
p” to below gives the composition pq of p and ¢, which hence is in Cp.

We conclude that Cy is closed under the category operations, hence it is a
category of partitions, containing Y. On the other hand, the partition 1 ® 1
is not in Cy, since m(w(? ® 1,1)) is a word of the form ab, where a and b are
different letters in G. By Lemma 6.3.7, these elements are not in H. Thus, Cy
is simplifiable. U

We show now that the map H — Cy is the inverse of F.

Theorem 6.3.10. The maps F and H — Cy are inverse to each other. Hence,
the map F' is bijective as a map from simplifiable categories of partitions onto
proper Sy-invariant subgroups of E.
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Proof. Firstly, let H be a proper Sp-invariant subgroup of E, and let =z € H.
Denote by p the partition connecting the letters of the word z if and only if
they coincide, and let [ be the labelling such that w(w(p,l)) = x. Thus, p e Cy
and hence z € F(Cg). (Recall that € F(C) if and only if 2 = w(w(p,1)) for
some p € C and some labelling I.) Conversely, let = = w(w(p,1)) € F(Cy) where
p € Cy. By definition, there is a labelling I such that w(w(p,!’)) € H. Now, H
is invariant under exchange of letters, thus z = 7(w(p,)) € H. We deduce that
H = F(Cq).

Secondly, let C be a simplifiable category of partitions, and let p € C. Then
m(w(p,1)) € F(C) for any labelling /, and hence p € Cpc). On the other
hand, for p € Cp(cy there is a labelling | such that 7(w(p,l)) € F(C). Thus,
m(w(p, 1)) = w(w(g,l")) for some partition ¢ € C and some labelling I’. By
Lemma 6.3.1 and Lemma 6.2.11, we have p € C. This finishes the proof of
C =Cr()- O

6.4 Classification and structural results for easy
quantum groups

In this section we deduce from Theorem 6.3.10 that there are uncountably many
different simplifiable categories. We end this section by giving structural results
on the lattice of simplifiable quantum groups.

6.4.1 The classification of simplifiable categories by invariant
subgroups of [,

We can identify £ < Z3* with a free group and describe the restriction of
endomorphisms from Sy to E. This is the content of the next lemma.

Lemma 6.4.1. We put x := ayax+1 for k =1,2,... Then x1,x2,... is a free
basis of E. The restriction {¢|g|¢ € So = End(G)} of endomorphisms to E is
the semigroup generated by

1. finite identifications of letters, i.e. for any n € N and any choice of indices
i(1),...,i(n) the map

Tk > Ti(k) 1<k<n,
Tp > Tk k>n,

2. for alli e N, the map defined by xj — x;l -xp for all k € N,
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3. for all k e N, the map xy, — e that leaves all other letters invariant,
4. the map xp — 56,;1 for all ke N,

5. all inner automorphisms of E,

Proof. We have a:,;l = ag+101 for all k € N. So, every word of even length in G
can be written uniquely as a product of the elements 1, xl_l, To, x2_1, .ev, SO

T1,To,... is a free basis for E.

We check that the endomorphisms (i)-(iv) are precisely the restrictions of the
generators of Sy as given in Definition 6.3.5. In order to obtain (i) it suffices to
consider the endomorphism of G defined by a1+ a;)+1 for 1 <k <n and
leaving all other letters invariant. For (ii), we have to consider the endomorphism
of G mapping a1 — a;+1 and leaving all other letters invariant. For (iii), we
have to take the map ax,1 — a1. We considered all possible endomorphisms
from item (i) in Definition 6.3.5. The endomorphisms in (iv) are obtained
by mapping ary1 — ajags+ia1 and for all k € N. The conjugation by z; is
obtained by aj — a;+1ara;+1 for all k € N composed with the endomorphism
in (iv). Indeed xp = ajak+1 is mapped to a;r1a16K410i41 = x;lxlzlxi and
the endomorphism in (iv) maps this element to z;z,z;'. We considered all
possible endomorphisms from both items (i) and (ii) in Definition 6.3.5, so the
restriction of Sy to E is equal to the semigroup described in the statement. [

Note that the endomorphisms defined in the previous lemma depend on the
choice of the free basis 1, 2, . ... Fixing this choice, we obtain an isomorphism
ExF..

Definition 6.4.2. We denote by S the subsemigroup of End(F,.) generated
by the maps in Lemma 6.4.1.

Lemma 6.4.3. A subgroup of F . is S-invariant, if and only if

1. it is closed under identification and deletion of letters,

2. for alli e N it is closed under the map xy — 3:;1 -xp for all ke N,

3. it is closed under the map xj — a:,;l forall ke N,

4. and it is normal.
Proof. This is a translation of Lemma 6.4.1. Item (i) and (iii) of Lemma 6.4.1
correspond to item (i) here. The items (ii) correspond to each other, item (iv)
of Lemma 6.4.1 corresponds to item (iii) here and normality of an S-invariant

subgroup is the same as invariance under inner automorphism (item (v) of
Lemma 6.4.1). O
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Theorem 6.3.10 can be now translated into the more convenient setting of
subgroups of F.

Theorem 6.4.4. The map F of Definition 6.3.4 induces a lattice isomorphism
between simplifiable categories of partitions and proper S-invariant subgroups of
Fo.

Proof. This follows from Theorem 6.3.10 and Lemma 6.4.1 O

The formulation of the previous theorem allows us to employ a well-known
subset of the S-invariant subgroups of F,,. The next observation is essential for
the rest of this section.

Remark 6.4.5. Every fully characteristic subgroup (see Section 6.1.4 for a
definition) of [, is S-invariant. Hence F' induces a lattice embedding of proper
fully characteristic subgroups of [, into simplifiable categories of partitions.

To close this section, let us ask whether or not also the other implication holds:
Is every S-invariant subgroup of F. fully characteristic? We only have a partial
answer to this question.

Proposition 6.4.6. Fvery S-invariant subgroup of F.,, that contains the
commutator I1$2I1_1I2_1 is fully characteristic.

Proof. 1t suffices to show that the map sending an S-invariant subgroup of F, to
its fully characteristic closure is injective on subgroups containing :rlxgxl_lxz_ L
A proper S-invariant subgroup H < [, contains the commutator z;25 1xf1m2 =
aiasazayasas if and only if the associated category of partitions contains the
half-liberating partition. Similarly, the s-mixing partition hg corresponds to
the element ajasaias...ajas (s repetitions), which is equal to z§. So by
[232, Theorem 4.13], it suffices to prove that the fully characteristic subgroups
generated by x1wox; 'z, ' and z§ are pairwise different for different s € N\{1}.
By the fact that the group Z/sZ is abelian and has exponent s but not exponent
s’ for s’ < s, invoking the correspondence between fully characteristic subgroups
of [, and varieties of groups from Theorem 6.1.8, we finish the proof. O

6.4.2 Classification results for easy quantum groups
The link between the theory of varieties of groups and easy quantum groups is
given by Theorem 6.4.4 and Remark 6.4.5. Let us state this more precisely.

Theorem 6.4.7. There is a lattice injection from the lattice of non-empty
varieties of groups into the lattice of simplifiable easy quantum groups.
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Proof. The lattice of simplifiable quantum groups is anti-isomorphic to the
lattice of simplifiable categories of partitions. Theorem 6.4.4 shows that the
latter lattice is isomorphic to the lattice of proper S-invariant subgroups
of F,,. By Remark 6.4.5, there is an injection of lattices of proper fully
characteristic subgroups of F. into the lattice of proper S-invariant subgroups
of F. The former is anti-isomorphic with the lattice of non-empty varieties
of groups by Theorem 6.1.8. Composing these isomorphisms, injections and
anti-isomorphisms, we obtain an injection of lattices as in the statement of the
theorem. O

Remark 6.4.8. The proof of the previous theorem also shows that there is a
one-to-one correspondence between varieties of groups and certain simplifiable
categories of partitions. We hence obtain a combinatorial and a quantum group
perspective on varieties of groups.

The correspondence from the last theorem allows us to translate known results
about varieties of groups into statements about easy quantum groups. Let us
start with some results about the classification of easy quantum groups.

In [17], the question was raised whether or not all easy quantum groups are
either classical, free, half-liberated or form part of a multi-parameter family
unifying the series of quantum groups H,(ls) and H,Es]. We can answer this
question in the negative.

Theorem 6.4.9. There are uncountably many pairwise non-isomorphic easy
quantum groups.

This follows directly from Theorem 6.4.7 and the following result by Olshanskii.

Theorem 6.4.10 (See [148]). The class of varieties of groups has cardinality
equal to the continuum.

Easy quantum groups offer a class of examples, which is concretely accessible
by means of combinatorics. Therefore, it would be good to amend Theorem
6.4.9 with concrete examples. Unfortunately, partitions are not well-suited to
represent higher commutators in £. We therefore omit a concrete translation of
the following result of Vaughan-Lee. The notation [x1,z2, 3, ...,z,] denotes
the higher commutator [[[- - - [[x1, z2], #3], ®4], - .. ], Tn]-

Theorem 6.4.11 (See [221]). Let z,y,z,21,22,... be a free basis of Fo,.
Denote wy, = [[z,y, 2], [x1,22], [x3, 4], - -, [T20—1, T2k], [x,y, 2]]- Then the
fully characteristic subgroups of F.. generated by

{wk | ke I} v {x167 [[1'1,1'2, $3]7 [$4,5E5, xﬁ]a [.'1/'7,558]]} 3 IcN

are pairwise different.
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It would be interesting to find an uncountable family of categories of partitions,
which is more natural from the point of view of combinatorics.

Remark 6.4.12. Given a certain class of objects that we want to classify up
to a given equivalence relation ~, it is generally known that the cardinality of
the quotient set does not say a lot about the difficulty of the classification. The
difference between the classification of torsion free abelian groups of rank 1 [6]
and of rank > 2 [130, 135, 204] is a classical instance of this fact. The theory
of Borel reducibility offers a better point of view on classification problems
of this kind. See [128] for an exposition. If R, S are equivalence relations on
Polish spaces X and Y, respectively, then R is called Borel reducible to S, if
there is a Borel map f : X — Y such that x1 ~g 22 & f(21) ~s f(22). In
common terms, R is “easier” then §. We call R smooth, if it is reducible to the
equivalence relation of equality of points on some Polish space Y.

Denoting by P the set of all partitions, the space X = 2F of subsets of P is a
Polish space. Denote by Rga the equivalence relation on X making 1,22 € X
equivalent, if and only if they generate the same category of partitions, i.e.
{z1)y = {x2). We show that Rg¢ is smooth. From the point of view of
Borel complexity, this can be interpreted as saying that it is comparably easy
to decide whether two subsets of partitions generate the same category of
partitions. However, the lattice of easy quantum groups is not traceable, as
is demonstrated by Theorem 6.4.7. We thank Simon Thomas for pointing out
the following argument to us. The set CAT < X of categories of partitions is
a Borel subset and hence the Borel space CAT is isomorphic to the space of
Borel sets on some Polish space. Moreover, the map gen : X — CAT sending
x € X to the category of partitions that it generates is Borel. It follows that
Rqa is smooth.

For the sake of completeness, let us elaborate on the above argument. We show
that CAT < X is Borel and that gen is a Borel map. Consider the following
maps.

e Tens: X x X — X defined by Tens(z,y) = {p®q|p€ z,q € y}.

e Comp : X x X — X defined by Comp(z,y) = {pg|p € zand q €
y are composable}.

e« *: X 5> X:zw— {p*|pex}.

Proving that the preimages of the sets {x € X |p € x}, where p runs through
all partitions, are Borel, one can show that all the maps above are Borel. Note
that the rotation operations of a category of partitions can be deduced from its
other properties (see Remark 1.6 of [232]). It follows that CAT < X is a Borel
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set, since it is the intersection of the fixed points of the above maps with the set
{x € X |z contains the identity partition | and the pair partition m}. It also
follows that x — gen(x) is Borel, since gen(z) arises from x as the union of
countably many iterated applications of the above maps to x U{|®" |n € N}u{r}.

Remark 6.4.13. If (A4, u) is a hyperoctahedral quantum group with associated
category of partitions C, then T ® 1¢ C. As a consequence, Hom(u, u) is one
dimensional and hence u is an irreducible corepresentation of A. It follows
that the tensor C*-category of unitary finite dimensional corepresentations of
(A, u) is generated by a single irreducible element. So Theorem 6.4.9 gives
rise to many new tensor C*-categories, whose fusion rules are described by the
combinatorics of categories of partitions. It remains an interesting question to
determine these fusion rules.

6.4.3 Structural results for easy quantum groups

We position known hyperoctahedral quantum groups in the context of varieties
of groups. See also Example 6.1.7.

Example 6.4.14. 1. The variety of all groups corresponds to the trivial
subgroup of F,, which in turn corresponds to the maximal simplifiable
quantum group bzl (resp. to the category (H)).

2. By Proposition 6.4.6, the category {(X,rrm) corresponds to the
commutator subgroup of .. So Example 6.1.7(ii) shows that the quantum
group H* corresponds to the variety of all abelian groups.

3. By the same Proposition and Examples 6.1.7 (ii) and (iii), the categories
{X,rmm, hsy correspond to the fully characteristic subgroup of F..
generated by the commutator subgroup and zj. It follows that the
easy quantum group H,(f), s = 2 corresponds to the variety of abelian
groups of exponent s. Note that H7(l2) = H, is a group.

We end this section by giving two structural results regarding the classification
of simplifiable quantum groups.

For a simplifiable category C denote by C its intersection with (X, 7). The
following theorem generalises Theorem 4.13 of [232].

Proposition 6.4.15. Every simplifiable easy quantum group G is either an
intermediate quantum subgroup HY D G o H}* or it is the intersection of

some HI o Gy o HY and Hr[f] for some s = 2. FEquivalently, for every

simplifiable category C that is not contained in {X,rrm), there is s = 2 such
that C = (C°, h).
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Proof. Take a simplifiable category C that does not contain the crossing partition.
Let H < F,, be the S-invariant subgroup of F,, associated with C by Theorem
6.4.4.

Take w € H. The exponent of x; in w is by definition the sum of the powers
of x; that appear in w. Denote by e; the exponent of x;. For all ¢, we obtain
x;" € H, by applying to w the endomorphism of [, that erases all letters of
w except for x;. For later use, note that since [F,F..] is the kernel of the
abelianisation map F., — Z*, we can write for some n € N and for some word
ce Hn|Fy,Fsyl

€n . —e1

w =z -z (x, cx] % w) =2t xire.

Let s be the minimal number such that 7 € H. By the previous decomposition
of words we see that H is generated as an S-invariant subgroup by x] and by
H n[F,F,]. Appealing to the correspondence between simplifiable categories
of partitions and S-invariant subgroups of F,, in Theorem 6.4.4, we have finished

the proof. 0

Proposition 6.4.16. Fvery simplifiable quantum group G # H, has Hff) as
a quantum subgroup for some s = 3. Equivalently, every simplifiable category of
partitions that does not contain the crossing X is contained in (X, rrm, hsy for
some s = 3.

Proof. This follows from Proposition 6.4.15: let G # H, be a simplifiable
quantum group. Then either G contains H}* or it contains Hff) =H*n H,Es]

for some s > 3. O

6.5 The C*-algebras associated to the simplifiable
categories

Given a category of partitions C, we denote by (Ac(n), u,) the compact matrix
quantum group with fundamental corepresentation of size n x n associated with
C. In this section, we study the C*-algebras associated with the categories
C = (), denoted by Ac(n) = C(H,[Lm]). We also study the C*-algebras A¢(n)
for C = <#xﬁ>, since some of their theory is similar.

Recall that the hyperoctahedral quantum group H;T corresponds to the category
{rm). If G € OF is a compact quantum subgroup of O;F and u denotes the
fundamental corepresentation of C(G), then the map T}, for p =rrm is in the
intertwiner space Hom(1,u®?) if and only if UikUjk = UkiUg; = 0 whenever
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i # j. Hence, this relation is fulﬁlled for all compact quantum subgroups
G < H,F. We also have Y, u?, =Y, uk] =1, as well as u;; = u};, for all ¢,
(see [232] for the relations of C(HT)).

35

Recall also the definition of the linear maps T}, : (C™)®* — (C™)® indexed by
a partition p € P(k,1):

Tpleiy @ ®eir)) = Z p(i,4) - €j1) @+~ ®ejq)
J(1),..5{h)=1
Here, e1,. .., e, is the canonical basis of C”, and ¢,(¢,7) = 1 if and only if the

,7(1 )) that are connected by the

indices of ¢ = (i(1),...,i(k)) and 5 = (j(1),.
=0. (cf [24, Definitions 1.6 and 1.7])

partition p coincide. Otherw1se 0p(%,7)

Lemma 6.5.1. Let G ¢ H;} be a compact quantum subgroup of H and denote
by C(G) its corresponding C*-algebra generated by the entries of the fundamental

corepresentation u;j, 4,5 = 1,...,n. Then
1. T, € Hom(u®, u®) for p =#Xﬁ if and only if u?juzl = uklu for all
i, 5,k 1.
2. T,

€ Hom(u®?,u®3) for p =Y if and only if wiju3, = uiu;j for all
1,7, k1.

Proof. Compare u®*(T,®1) with (T, ® 1)u®* for (i) and analogous for (ii). O

We will now describe the C*-algebras corresponding to the categories <#xﬁ> and

(-

Proposition 6.5.2. The C*-algebras Ac(n) associated with <#xﬁ> and ()
are universal C*-algebras generated by elements Uiz, 4,5, =1,...,n such that

1. the u;; are local symmetries (i.e. u;; = u . and u is a projection),
2. the projections ufj Julfill Y, u? = > uij =1 foralli,j,

2

3. in the case C = <u|_|>, we also have uj;

ui, = uklu for alli,j, k1,

4. in the case C = (H), we even have u”ukl = uklu for alli,j, k1.

Proof. The C*-algebras Ac(n) fulfill the relations of C'(H, ), the C*-algebra
associated with the free hyperoctahedral quantum group H,'. It follows that
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u3; is a projection, since uf; = uf; (X, ug,) = Xy wij (wijuin)uix = uf ;j- Lemma

6.5.1 shows that in addition the relatlons (iii) or (iv) hold, respectively.

In order to show, that Ac(n) is universal with the above relations, note that
C(H;}) is universal with the relations in (i) and (ii). So A¢(n) is the quotient
of this universal C*-algebra, by the relations imposed by Lemma 6.5.1. So it is
the universal C*-algebra for the relations (i), (ii) and (iii) or (i), (ii) and (iv),
respectively. O

This proposition shows that the elements u?. fulfill the relations of S,,, the
(classical) permutation group (or rather of C'(S,)). The squares of the elements
u;; of the above C*-algebras Ac(n) thus behave like commutative elements,
whereas the u;; itself behave like free elements. The quantum groups A¢(n) are
hence somewhat in between the commutative and the (purely) non-commutative
world.

Remark 6.5.3. From the description of their C*-algebras in Proposition 6.5.2,
we can deduce that <:::><#> # (44> by showing that the canonical quotient

map from Ac(n) to Ac(n) for C = < > C' = (L) is not an isomorphism.
Indeed take n = 3 and let H = C3 Wlth its canonical basis eq, es, e3. Denote
by p; the projection of H onto Ce;, i € {1,2,3}. We define operators w;;,
1 <,7 < 3 on H, which define a representation of A¢(n) but not of Ac:(n). Let
wi1€] = ez, wires = e; and wyiez = 0 and woe = p;. Then w%lw%Q = w§2w%1,
but wyjw3, # wi,wii. Define

wo1 = wi2 =p3, w3y =wiz =0
Wo3 = W32 = P2, W33z =p1 +p3.

Then (w;;);; induces a representation of A¢(n), which does not factor through
Ac (n) - Ac/(n).

Remark 6.5.4. 1. If 7: C(H [7]) — %(H) is an irreducible representation,
the projections w(u?j) are either 1 or 0, since they commute with all

elements of W(C(HT[L%])). Since Zk m(ud) = Y, m(u?;) = 1, there is a
permutation v € S, such that 7(u;) = 1, if 7(i) = j, and 7r( u;) = 0,
otherwise. Recall, that the full group C -algebra C _ (Z™) is isomorphic
to the n-fold unital free product of the C*-algebra CX  (Z3) = C2.
The latter is the universal C*-algebra generated by a symmetry. Thus,
Cl < (Z%™) is the universal unital C*-algebra generated by n symmetries
Wy, ..., Wy So, the map mo(w;) := 7T(u;y(;)) defines a representation of
Ch (25",

max
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Vice versa, we can produce representations of C(HED]) by permutations.
First note that the relations of C(ka]) are invariant under permutation
of rows or columns of its fundamental corepresentation. Let g
C < (Z3™) — B(H) be a representation and let v € S,, be a permutation.
The map C(H,[L%]) — C;’;ax(Z’Q"") DU e 6j'y(i) - w; is well defined. So
T(uij) := 0j(s)To(w;) defines a (not necessarily irreducible) representation
of C(HL).

In the C*-algebra associated with a simplifiable category C, the relations on
the generators may be read directly from the partitions in single leg form. Let
P = ai1) - ayx) € P(0,k) be a partition without upper points in single leg

form.

We consider p as a word in the letters aq,...,a,, (labelled from left to

right). If we replace the letters a;, 1 < < m, in p by some choice of generators

Usgj, 1

< i,j < n, we obtain an element a;)--- ;) € Ac(n); replacing the

letters by the according elements u?j yields a projection ¢ € Ac(n).

Prop

osition 6.5.5. Let C be a simplifiable category and let p = a;(1y - - ar)

be a partition in single leg form. The following assertions are equivalent:

1. peC.

2.

a1y @iy = q in Ac(n) for all choices a, € {u;; | i,j = 1,...,n},
1 < r <m, where q is the according range projection.

3. For some 1 < s < k, we have qa;1) -+ i(s) = qik) -~ Qi(s+1) N Ac(n)
for all choices a, € {u;j | i,j = 1,...,n}, 1 < r < m, where q is the
according range projection.

Proof. The linear map T), : C — (C")®* associated with p is given by
T,(1) = Z Op(i)eiy @« - ® ey -
i(1)ei(k)=1
We have
BT, @ 1)(181) -
n n
Z ei(1) - e ® Z Op(d) Wiy Wigkysk) |
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so that p € C, if and only if for all multi-indices ¢ = (i(1),...,i(k)) the equation:

n

DT 60wy i) = 0p(0)

holds. Now, assume (i) and let us show (ii). Make a choice of a, € {u;; |%,j =
1,...,n} for all r € {1,...,m}. Then there are multi-indices i and j satisfying
0p(i) = 6,(j) = 1 such that @i(1) * Gi(k) = Wi(1)5(1) " Wi(k)j(k)- Let ¢ be the
projection given by ¢ := “12(1)1'(1) e u?(k)j(k). Then

Wi(1)g(1) " " Wik)j (k) = Wi(1)j (1) " " Wilk)s(k)

D G(r)  Uigkye(r) - Uiy
r(1),...,r(k)=1
= D1 () wiay) Wik e-
(1) (k) =1

(85 k() U gk ey ) i (k=1 (hm1) * * Ui(1)r(1)

= 3 5 S 0y St i)

This proves (ii). Conversely, assume (ii) and let ¢ be any multi-index. If
0p(i) = 0, then w;1)j1) - Uik)jky = 0 for any multi-index j that satisfies
dp(j) = 1, since in this product there are at least two local symmetries that
have mutually orthogonal support in the centre of Ac¢(n). Hence

n

D () iy e Wik =0
() (k)=1

Similarly, using the assumption (ii), if d,(¢) = 1, then

2 Jwiyiay e iy > i 0p(0) =1,
Hii T i) T g otherwise.
We obtain that
n n
2 S0 wws  wem = D Uiy Uiy = L
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This proves (i). The assertions (ii) and (iii) are equivalent, since all projections
a?, 1 < r < m are absorbed by ¢ and qai(ry " Qik) = Qi(1) " Qi(k)- O

Let us recall the notion of a coopposite quantum group. If (4, A) is a compact
quantum group, then its coopposite version is the quantum group (A4, X o A),
where X : A® A — A® A is the flip. In particular, if (A, u) is a compact matrix
quantum group, its coopposite version is the compact matrix quantum group

(A, ub).

Corollary 6.5.6. FEvery easy quantum subgroup of (C(Hr[{w]),usimpl) is
isomorphic to its coopposite version.

‘]

Proof. Let (A¢(n),u) be an easy quantum subgroup of C(Hr[L7 ) Usimpl) With
corresponding category of partitions C. By Proposition 6.5.5, (A¢(n),w) is the
universal C*-algebra such that

o all u;; are local symmetries whose support is central in A¢(n) and sums
up to 1 in every row and every column

o for any partition p = a;(1)--- a;x) € C and any choice of elements a, €
{uij |1 <i,5 <nj, 1 <r <m we have that a;(1) -+ a;() is a projection.

These relations are invariant under taking the transpose of u. So u;; > u;; is a
*_automorphism of A¢(n). This finishes the proof. O

Example 6.5.7. Let p be the word p = abcbcach and consider the C*-algebras
associated with the category (44, py. Note that the equation abcbcach =1 in
Zo % Lo + Z5 is equivalent to abch = becac. The idea is that Proposition 6.5.5
yields the commutation relations

Ujj Ukl UrsUk] = Uk UrsUijUrs
in Ac(n) with p € C “wherever it makes sense”. To be more precise, we have

QUi Uk UrsUk] = qUE]UrsUijUrs,

where ¢ = u%j u?,u2,. By multiplying from left or right with the local symmetries

Uij, Ukl, and u,s, we also obtain relations like for instance
QUG UK Urs U] UrsUis = qUEIUrs O Ujj U] Urs Uk UrsUijUrsUk] = ( -

Remark 6.5.8. The K-theory for the C*-algebras associated with easy quantum
groups is relatively unknown. Voigt computed the K-theory for O} in [227] and
there are some small extensions of this result to other easy quantum groups in
[232]. Let us also mention [222].
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6.6 Diagonal subgroups and their quantum isome-
try groups

If C is a simplifiable category of partitions, the group F'(C) from Theorem 6.3.10
can be recovered directly from (Ac(n), un)ns2. Vice versa, Ac(n) arises as a
natural subgroup of the quantum isometry group of F(C). This is explained by
the following results.

Definition 6.6.1. For H c Z%™ write
(H), = {w € H|w only involves the letters ay,...,a,}.

Definition 6.6.2. Given a compact matrix quantum group (A, u), its diagonal
subgroup Diag(A,u) is the discrete group that is generated by the image of the
diagonal entries of u in the quotient C*-algebra A/(u;; |i # 7).

Theorem 6.6.3. Let C be a simplifiable category of partitions. Then
Diag(Ac(n), uy) = Z5"/F(C),

Proof. Let H be the diagonal subgroup of Ac(n). The C*-algebra Ac(n)
is the quotient of A,(n) by the relations T, ® 1 = (u%)®*(T, ® 1) for all
p € C. Moreover, the diagonal subgroup of the free orthogonal quantum group
satisfies Diag(A4,(n),u2) = Z%". Denote by 7 the quotient homomorphism

Ac(n) — Ac(n)/Kuyj | i # 7). Then there is a commuting diagram

(Ao(n),up) —— C

max

| J

(H).

(Z5™)

(AC (n)7 un) — Czlax
So H is the universal group generated by elements a; = m(u;), 1 <i < n of
order two that satisfy T, ® 1 = (7(u,,))®*(T, ® 1) for all p € C. Moreover, it
suffices to consider partitions p € C on one row. Let p € C be such a partition of
length k. Then T, ® 1 = u®*(T, ® 1). Hence, we have equality of

(T, @)(1®1) = Z Op(i) - ei1) ® - @ e @1
i(1),...,i(k)=1
and

WHTRN(IR) = Y 5p1) ey @+ ® €y @ Uiqayja) -+ Uikjick)

i(1),...5i(k),
J(1),..,5(k)=1
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Applying the projection 7 to both equations, we obtain that for all i(1),...,i(k)
with d,(i) = 1 we have 7(u;(1yi(1)) - -+ T(Uir)ik)) = 1. This shows that H =
7% /F(C)y,. O

Note that as a consequence of the last theorem the C*-algebra Ac(n) is a
canonical extension of the full group C*-algebra Cp_ (Z3"/F(C),).

max

Lemma 6.6.4. Let H be a subgroup of Z3*. Then 25 /H = limy(Z3" /(H )n, ¢n),
where ¢, is defined by the diagram

¢’7l
(H)n - (H)n+1
N N
Z;n ai_'—’()li Z§n+1 .

Proof. By universality of inductive limits, we have to show that for any
compatible family of morphisms

23" )(H)n —— 23" /(H)ppr —— Z3"7%)/(H)pp2 ——

N

K

the induced map 7 : Z§* — K contains H in its kernel. This follows from the
fact that H = J,,>1(H)n. O

The following corollary says that for a simplifiable category of partitions, we can
recover F(C) directly from the diagonal subgroups of the family (Ac(n), un)n=2-

Corollary 6.6.5. Let C be a simplifiable category of partitions. Then F(C) =
ker(Z}* — limy(Diag(Ac(n), un))-

Proof. This follows from Theorem 6.6.3 and Lemma 6.6.4. U

We can also recover (A¢(n),u,) directly from the group F(C) without passing
through the framework of partitions. This is done by considering quantum
isometry groups. By [17] the category (W) gives rise to an easy quantum

[]

group, denoted by Hy . It is the maximal simplifiable quantum group.
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Theorem 6.6.6. Let H < E < Z3™ be a proper Sy-invariant subgroup of E.

Then the maximal quantum subgroup of (C(H,[LOO]), Usimpl) acting faithfully and
isometrically on C% . (Zi"/(H),) is (Acy (n), uy).

Proof. Denote by m : Z3™ — Z3"/(H),, the canonical quotient map and by
ai,...,a, the canonical generators of Z%™. Since H,L:'O] is isomorphic to its
coopposite quantum group by Corollary 6.5.6, we may consider quantum
subgroups of (Hr[f(’])COOp instead of HY*! in the following. Let (A4,u) be a
compact quantum subgroup of H such that (A, u?) acts faithfully by

0t ChanlZ5"(H)2) = Chax(@37/(H)) © A 7(0.) > 3 m(a;) @ sy

on C¥ .. (Z3"/(H),) and preserves the length function [ associated with the

generators m(ay),...,m(a,). We show that (A,u) is a quantum subgroup of
(Acy (1), un).

Since (A,w) is a quotient of (C’(H,[{L])7 Usimpl ), Proposition 6.5.2 shows that the
entries u;; of u are self-adjoint partial isometries, which are pairwise orthogonal
in every row and in every column and whose support projections are central. We
check the additional relations that are imposed on the u;; by the fact that (A, u®)
acts isometrically on C}; . (Z5"/(H),). For every word a;(1--- a;x) € Z5" we
have

n

a(m(any - amw)) = Y, Ta) - ajiy) @uiyiay e Wikyick) -
(1), g (k) =1

This expression has non-zero coefficients u;(1)j(1) - wix)j) only for those

(](1)7 e ,j(k’)) with l(ﬂ'(aj(l) Tt aj(k))) = l(w(ai(l) s az(k))) Using the fact
that I(7(a;(1) - - aix))) = 0 if and only if a;(1y -+~ @) € (H)n, this means in
particular that for all a;1y -+ a;x) ¢ (H), we have

> Ui(1)j(1) " Uigk)jk) = 0-
aj(1)- aj(r)E(H)n
On the other hand, if a;() -+ a;x) € (H), then
a(m(aiay - airy)) = (1) =1®1.

It follows that

> Wi(1yj(1) "+ Wilkyj(k) = 1
aj1y ajr)E(H)n
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We proved that for all ;1) -+ aixy € Z3" we have

Z Ui(1)j(1) " " Uik)j(k) = op(i) - 1,
aj1y aj(k)E(H)n

where p denotes the partition in Cy that is associated with a;q) -+ a;@)-

Next, we claim that if w1y - wir)jk) # 0, then the word aj(1y--- a;jx)
arises from a;(1) -+ a;r) by a permutation of letters. Recall that all u;; are
self-adjoint partial isometries, which are pairwise orthogonal in every row and
every column and whose supports are central in Ac,(n). If 1 < a,8 <k, we
can conclude from i(a) = () and w;(1);(1) - Uir)jk) # 0, that j(a) = j(3).
Similarly, we conclude from j(a) = j(5), that i(a) = ¢(5). This proves our
claim.

Take now a partition p € C. By our claim, for any multi-index i = (i(1),...,i(k)),
which satisfies 6,(¢) = 0, we have

n

Z () - winyjcy - Wigkyicky =0
J(1)~a.](k):1

If ¢ = (i(1),...,i(k)) satisfies 0,(i) = 1, we obtain, using the claim again,

a5y aj) E(H)n
Summarising, we have

n

D %) iy e ki = 0p(0) -
i(1),....5(k)=1
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We infer that

n

T, ®1)(1®1) = Z ei(1) @+ @ ei(ky ® Ip(J) * Ui(1)5(1) " ** Wi(k)j(k)
i(1) i (k),
J(1)ii)=1
= D) an® ®ep®
(1)) =1
Yo %) i i
3(1)7"'a.j(k):1
= Z ei(1) @ ® ey ®p(i) - 1
i(1)ei(k) =1
=(T,e1)(1®1).

We proved that (A, u) is a quantum subgroup of (A¢,, (n), uy).

Next we show that (Ac, (n),(u,)?) acts faithfully and isometrically on
Ck (ZE"/(H),). The map

@t Cha(Z5"[(H)n) = Chax(Z5"/(H)2) ® Acyy (n) : m(ai) = Y m(a;) @uy

J
is a well defined action of (A¢,, (n), (u,)t) on C¥ . (Z5/(H),), by the calculations
in the first part of the proof. By definition, it is faithful, so it remains to show that
it is isometric. We say that a word a1y - -+ a;(x) is reduced in Z3" /(H),, if there
isno k' < kand j(1),...,7(k) such that m(a;(1y - - aix)) = T(ajay - ajpny). A
word a1y - -+ @k is reduced in Z5"/(H),, if and only if I(m(a;1) - -+ a;j))) = k
Denoting

Ly = span{w = (a;1) - air)) | @iy - @i

is reduced as a word in Z3"/(H),},

we have to show that a(Ly) < Li®Ac,, (n). First note that a(Ly) < Jy<p Liv®
Acy(n). Let m(a;qy) -+ m(a;k)) denote a word that is reduced in Z5"/(H )y,
write w = (a1 -+ a;x)) and assume that a(w) ¢ L, ® Ac,, (n). We have

alw) = Y waja) e ajm) @uiryia) Witk »

so there is some mutiindex (j(1),...,5(k)) such that
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e aj(1)- " G () is not reduced in Z3"/(H),, and

* Ui(1)j(1) " Wik)j(k) # 0

As seen above, the word a;(1) - - a;() must arise as a permutation of letters
from aj1y - ajr), because wi1yj1) - Usk)jky # 0. Since ajry- -+ ajr)
is not reduced in Z5"/(H), and a;;y--- a;x) arises from a;(iy -+ aj) by
a permutation of letters, also a;1)--- a;) is not reduced in Z3"/(H),.
This is a contradiction. @We proved that « is an isometric action of
(Acy (n), (un)?). Summarising we showed that the maximal quantum subgroup

of (C(HE), ugimp1) which acts faithfully and isometrically on C*,, (Z:"/(H),)

is isomorphic to (Ac,(n), (un)!). Invoking Corollary 6.5.6, we see that
(Acy, (n), (un)') = (Acy, (n),uy,) and this finishes the proof. O

In view of the last theorem, it would be interesting to calculate the full quantum
isometry groups of C}  (Z*"/(H),).

max

Example 6.6.7. One class of groups which appear as Z3"/(H),, for some
Sp-invariant subgroup H < E < Z5* are Coxeter groups. A Coxeter group G
is of the above form if and only if

G =175"[(aia;)* |1 <i,j < ny,

for some s € N>o. The easy quantum group associated with it is H,[f], since the
category of partitions of the latter is given by {rrm, hs).

6.6.1 The triangluar relationship between quantum groups,
reflection groups and categories of partitions

Let us give a name to the groups that appear in the first part of this section.

Definition 6.6.8. Let H < Z”* be an Sp-invariant subgroup. A symmetric
reflection group G is the quotient of Z¥" by the intersection H n Z%™. The
images of the canonical generators of Z3™ in G are called the generators of the
symmetric reflection group G.

We obtain a correspondence between simplifiable quantum groups and symmetric
reflection groups. By the work of Banica and Speicher [24], there is a
correspondence between easy quantum groups and categories of partitions.
Finally, the results of Section 6.3 show that there is a correspondence between
symmetric reflection groups and simplifiable categories of partitions. We
therefore obtain a triangular correspondence between simplifiable quantum
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groups, symmetric reflection groups and simplifiable categories of partitions
that we are going to recap.

simplifiable = simplifiable
categories of easy quantum
partitions groups
symmetric
reflection
groups

From quantum groups to categories of partitions and back: By the
work of Banica and Speicher [24] there is a one-to-one correspondence between
easy quantum groups and categories of partitions. As described in Section
6.1.2, the category of partitions associated with an easy quantum group (A, u)
describes the intertwiner spaces between tensor powers of the fundamental
corepresentation u. By definition, an easy quantum groups is called a simplifiable
quantum group, if the category of partitions associated with it contains the
four block rm, the pair positioner partition Y4, but not the double singleton

T®T.

From categories of partitions to reflection groups and back: Theorem
6.3.10 shows that there is a one-to-one correspondence between categories
of partitions and Sp-invariant subgroups of Z5*. By definition, symmetric
reflection groups on infinitely many generators correspond precisely to the
Sp-invariant subgroups of Z5™.

From quantum groups to reflection groups and back: Let (A, u), u €
M, (C)(A) be a compact matrix quantum group. The quotient of A by the
ideal generated by {u;; |7 # j} is a cocommutative compact matrix quantum
group. It is of the form (C*(G),(8;j¢:)ij) for a generating set g1,..., g, of
a discrete group G. Theorem 6.6.3 shows that if (C(H),u) is a simplifiable

quantum group, then the associated discrete group G with generators g1,..., g,
is a symmetric reflection group. Vice versa, Theorem 6.6.6 associates with
a symmetric reflection group G on finitely many generators gi,...,g, the

maximal quantum subgroup of H c H,[;T’] that acts faithfully and isometrically
on C% . (G). The remark after Theorem 6.6.3 says that C(H) is a canonical
(G) as a C*-algebra.

extension of CJ,

From finitely generated to infinitely generated symmetric reflection
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groups and back: Given a symmetric reflection group G on infinitely many
generators gi, go, ... all groups G,, = {g1,92, ... gny are symmetric reflection
groups also. They form an inductive system

c 5 Gy > Gpyg o -

of symmetric reflection groups. We can obtain G as the inductive limit of this
system.

Theorems 6.6.3 and 6.6.6 show that the above correspondences are compatible
with each other. Put differently, the triangle between quantum groups, discrete
groups and categories of partitions commutes.



Chapter 7

Summary and open problems

In this chapter, we give a brief summary of the work presented in this thesis in
Section 7.1 and then in Section 7.2 sketch open problems further supporting
the common direction of our projects.

7.1 Summary of our results

This thesis collects different results on von Neumann algebras and quantum
groups focusing on classification results for natural subclasses of these and
calculation of categories of representations. The work in Chapter 3 gives a
complete classification of group measure space constructions associated with
Bernoulli actions and some of their quotients of free groups of finite rank
in terms of the rank of the free groups involved. Chapters 5 and 6 contain
classification results for von Neumann algebras and easy quantum groups in
terms of classical data. While in Chapter 5 partial classifiaction results for free
Bogoliubov crossed products in terms of an orthogonal representation of Z, from
which the crossed product was constructed, is obtain, in Chapter 6 the main
point is the identification of a completely new invariant, namely symmetric
reflection groups, parametrising simplifiable easy quantum groups. In the latter
chapter, we put the lattice structure of the set of all easy quantum groups in
the focus and show that it is not possible to describe it completely, by injecting
the lattice of varieties of groups. This point of view also allows us to make
non-trivial statements on the structure of easy quantum groups, demonstrating
the direct connection between classification and structural results.

199
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Categories of representations are investigated in Chapters 2 and 4. In Chapter
2, the fusion rules of certain free quantum groups were calculated. Such
calculations, together with other methods already known before, hopefully
allow us to find the fusion rules of certain subclasses of the simplifiable easy
quantum groups described before. In Chapter 4, the existence of II; factors with
prescribed bimodule categories, for example arbitrary finite tensor C*-categories,
is shown. The tensor C*-category we can realise as a bimodule category can
also be the category of unitary finite dimensional corepresentations of a discrete
quantum group from a fairly big class. This connects our work on bimodule
categories of II; factors with our work on quantum groups, as we will describe
more detailed in Section 7.2.2. Our results on bimodule categories allow us to
obtain calculations of other invariants for II; factors, proving the usefulness of
this approach.

7.2 Open problems

We sketch several open problems deepening our research and relating the
different topics treated in this thesis.

7.2.1 Fusion rules for easy quantum groups

In view of older success when calculating fusion rules on a combinatorial basis
[7, 25] as in Chapter 2, it is realistic to expect that fusion rules of any easy
quantum group are at least in principle calculable. The results of Chapter 6,
however, show that the class of easy quantum groups is very rich, rendering a
uniform approach to all easy quantum groups quite impossible. It is therefore
reasonable to select interesting subclasses of easy quantum groups and try
to calculate their fusion rules. The higher hyperoctahedral and the higher
hyperoctahedral series introduced in [17] are a good candidates for such classes,
since they are very natural from a combinatorial point of view and correspond
under the bijection described in Chapter 6 at the same time to the variety of
abelian groups with fixed exponent and the variety of all groups with fixed
exponent, respectively. The associated reflection groups are Coxeter groups, so
that methods for determining the size of balls in their Cayley graph are available.
Since the size of such balls is related to dimensions of intertwiner spaces of the
corresponding easy quantum group, it is probable that the fusion rules of the
higher hyperoctahedral quantum groups can be calculated combining group
theoretical results and the known combinatorial methods.
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7.2.2 New examples of bimodule categories of II; factors

As shown in Chapter 4, every faithful corepresentation of a discrete Kac algebra
in the hyperfinite II; factor enables us to realise the category of its finite
dimensional unitary corepresentations as the bimodule category of a II; factor.
In view of the problem described in Section 7.2.1, it is interesting to find a
faithful corepresentation of the discrete dual of A,(n) in the hyperfinite II;

factor. In fact, it reasonable to conjecture that A,(n) is maximally almost
periodic in the sense of Soltan [198], due to its similarity with free groups.
It would be useful to obtain a proof that is based on the combinatorics of
intertwiner spaces of A,(n), so that also the following question can be answered:
are all discrete duals of easy quantum groups maximally almost periodic? A
positive answer to this question would yield many new examples of bimodule
categories combining the work in Chapters 4 and 6.

7.2.3 Calculation of bimodule categories of II; factors with
non-trivial fundamental group

In Chapter 4 we could show that many compact tensor C*-categories arise as
the bimodule category of a II; factor. However, all factors that appear there
have a trivial fundamental group. Skandalis asked whether it would be possible
to obtain examples with known bimodule category and non-trivial fundamental
group. As explained in Section 1.1.6, the group of invertible objects of the
bimodule category of a II; factor M is related to its fundamental group by the
exact sequence

1 - Ow(M) - Grp(M) - F(M) - 1.

In this light, it would be interesting to find for any countable subgroup S < R
and every finite tensor C*-category C a II; factor M such that F(M) =
S and Bimod(M) =~ SX C, where S is the category of finite dimensional
unitary representations of S and [x] denotes the Deligne tensor product of tensor
categories [61].

7.2.4 Is every countable tensor C*-category the bimodule
category of a II; factor?

A compact tensor C*-category is called countable, if it has a countable number
of isomorphism classes of irreducible objects. In view of our result in Chapter 4
that every finite tensor C*-category is the bimodule category of a II; factor, it is
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natural to ask whether the same is true for countable tensor C*-categories. Note
also that by a result of Vaes every countable group is the outer automorphism
group of a II; factor [215].

Recently, in [43], it was shown that every countable tensor C*-category can be
embedded into the category of bimodules over a free group factor. It seems
plausible, that every countable tensor C*-category can be even realised as the
category of bimodules of a depth 2 subfactor inclusion of a free group factor into
a factor of type II,,. Now the methods Chapter 4 could possibly apply, if the
following theorem of Popa on the outer automorphism group of the hyperfinite
II; factor, could be generalised to free group factors. In [117] it is shown that
for all countable subgroups G, H < Out(R), there is an element o € Out(R)
such that G and (Ad a))(H) are free. See [216] for the appropriate generalisation
to bimodule categories. This problem motivates questions about the outer
automorphism group of free group factors, one of which we state in 7.2.5.

7.2.5 Strong solidity of crossed products of integer actions on
free group factors

In Chapter 5, we extended the results of Houdayer-Shylakhtenko strong solidity
of free Bogoliubov crossed products of the integers. We showed that free
Bogoliubov crossed products of a direct sum of some mixing representation
with an at most one-dimensional representation is strongly solid, while free
Bogoliubov crossed products of actions with two-dimensional rigid subspaces
are not even solid. It would be interesting to explore, whether a crossed product
of a free group factor by an integer action is generically strongly solid.

There are classes of probability measure transformations in which a generic
(in the sense of descriptive set theory [127]) action is weakly mixing and rigid
[1]. If Z A X is such a transformation, then Z — O(I?g(X) OR- 1) is a
weakly mixing and rigid representation of Z and as such it gives rise to a free
Bogoliubov crossed product with property I', which hence cannot be solid.
On the other hand, it is known that a generic (in the sense of random walks)
automorphism of a finite rank free group is iwip (irreducible with irreducible
powers) [185, 197] and that mapping cones F,, x Z of iwip automorphisms of a
free group are hyperbolic [29, 28]. Combining this with the fact that group von
Neumann algebras of hyperbolic groups are strongly solid [46], we found a class
of automorphisms of free group factors, which generically give rise to strongly
solid crossed products.

As mentioned earlier in Section 7.2.4, specifically in the context of a possible
generalisation of the results in Chapter 4, it is interesting to investigate the
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outer automorphism group of free group factors from as many perspectives as
possible. The problem just described could be one aspect of such investigations.

7.2.6 Actions of duals of free orthogonal groups

The description of this problem is highly speculative. As explained in Section
1.2, actions of quantum groups provide a link between operator algebras and
quantum groups. One interesting problem in this context, is the search for
actions of quantum groups on abelian von Neumann algebras. Indeed, there
are no natural sources of such actions of quantum groups. However, in the
more specific situation of duals of free orthogonal quantum groups, due to their
universality properties, one can hope to find exarllgles. Assume that there was a

strictly outer ergodic trace preserving action of O, on some diffuse abelian von

Neumann algebra A. Then A ¢ A x O is a maximally abelian, quasi-regular
subalgebra of a II; factor. By a result of Popa [166, Lemma 3.5], A is a Cartan
subalgebra. So the construction of Feldman and Moore [89, 90] associates an

ergodic II; equivalence relation with A = A x O;f.

Several question about this equivalence relation would arise, if one could
construct strictly outer ergodic trance preserving actions of O; on abelian
von Neumann algebras. Can two equivalence relations arising this way from O;}

and O}, ever be isomorphic, if n # m? This question is of course inspired by
the fact that free ergodic pmp actions of free groups of different rank can never
be isomorphic. The von Neumann algebras I7”(O,) of free orthogonal quantum
groups posses many properties of free group factors. They are for example
strongly solid [119] and posses the W*-completely contractive approximation
property [42, 91]. At the moment, it seems not possible to decide whether
L*(O}) are free group factors or not. However, in the previous setting, it would

—

be interesting to look for actions of O; yielding an equivalence relation that is
stably isomorphic to an orbit equivalence relation of a free ergodic pmp action
of a free group. Such a finding could be interpreted as a measure equivalence
result between free groups and duals of free orthogonal quantum groups.
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