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Abstract

We present several classification results and calculation of categories of
representations for von Neumann algebras and quantum groups. The work is
structured according to its previous publication as preprints or journal articles
and grouped as two blocks, the first one dealing with quantum groups, the
second one with II1 factors. We recommend the reader who is not familiar with
the subject of this work, to consult directly Chapter 1.

In the first article, the fusion rules of the category of corepresentations of several
free quantum groups are calculated and we prove a theorem relating fusion
rules of a free complexification of an orthogonal quantum group with the fusion
rules of the original quantum group. The next article (joint work with Moritz
Weber) contains classification results for easy quantum groups. We classify a
large subclass of easy quantum groups in terms of reflection groups. This allows
us to prove that easy quantum groups form a rich and complex object of study.
The work also exhibits a fairly large class of non-classical quantum isometry
groups.

In the first article on von Neumann algebras (joint work with Niels Meesschaert
and Stefaan Vaes), we give a new proof for stable orbit equivalence of arbitrary
Bernoulli actions of finite rank free groups - a result earlier shown by Bowen.
Moreover, we can extend Bowen’s work and prove orbit equivalence with some
quotients of Bernoulli actions. This implies stable isomorphism of the associated
group measure space II1 factors. The second article on von Neumann algebras
(joint work with Sébastien Falguières) contains our work on bimodule categories
of II1 factors. We prove that for a tensor C�-category from a fairly large class,
including finite tensor C�-categories, there is a II1 factor whose category of finite
index bimodules is equivalent to this category. We also include consequences for
the calculation of other invariants of II1 factors. The last article contains partial
classification results for free Bogoliubov crossed products by the integers. These
include isomorphism as well as non-isomorphism results. We also conjecture
a characterisation of strong solidity for free Bogoliubov crossed products and
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iv ABSTRACT

support it with our results.

Our work is complemented by an introduction to the history of the subject and
a list of open problems illustrating the common direction of our research.



Beknopte samenvatting

Deze thesis bevat verschillende resultaten over de classificatie en de berekening
van representatiecategorieën van von Neumannalgebra’s en kwantumgroepen.
De hoofdstukken komen overeen met eerder gepubliceerde preprints en artikels.
Deze zijn in twee delen gegroepeerd. Het eerste bevat resultaten over
kwantumgroepen, terwijl het tweede over von Neumannalgebra’s gaat.

In het eerste artikel berekenen we de fusieregels van corepresentatiecategorieën
van enkele vrije kwantumgroepen. Bovendien tonen we een verband aan
tussen de fusieregels van een orthogonale kwantumgroep en van zijn vrije
complexificatie. Het volgende artikel (met medeauteur Moritz Weber) bevat
resultaten over de classificatie van een grote deelklasse van easy kwantumgroepen
aan de hand van reflectiegroepen. We leiden hieruit af dat easy kwantumgroepen
een rijk en complex onderwerp vormen. Bovendien vinden we een redelijk grote
klasse van niet klassieke kwantumisometriegroepen.

In het eerste artikel over von Neumannalgebra’s (met medeauteurs Niels
Meesschaert en Stefaan Vaes) geven we een nieuw bewijs voor het feit dat
vrije groepen van eindige rang vele paarsgewijs stabiel orbietequivalente
acties hebben. Hun Bernoulli-acties en zekere quotiënten ervan zijn allemaal
stabiel orbietequivalent. Bowen toonde al vroeger aan dat Bernoulli-acties
van vrije groepen van eindige rang paarsgewijs stabiel orbietequivalent zijn.
Stabiele orbietequivalentie van acties impliceert dat de bijhorende group
measure space-constructies stabiel isomorf zijn. Het tweede artikel over von
Neumannalgebra’s (met medeauteur Sébastien Falguières) bevat ons werk
over bimodulecategorieën. We tonen aan dat vele tensor-C�-categoriëen als
bimodulecategorie van een II1-factor voorkomen. Onder andere realiseren we
alle eindige tensor-C�-categoriëen, wat gevolgen heeft voor andere invarianten
van II1-factoren. Het laatste artikel bevat een gedeeltelijke classificatie
van gekruiste producten met vrije Bogoliubov-acties van de gehele getallen.
We bewijzen isomorfisme- en niet-isomorfismeresultaten voor dergelijke von
Neumannalgebra’s. Verder formuleren we een conjectuur die strong solidity van
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deze von Neumann algebras zou karakteriseren, welke we met enkele van onze
resultaten ondersteunen.

Onze onderzoeksresultaten worden verder aangevuld met een historische
inleiding van de materie en een lijst van open problemen die de richting van
ons onderzoek verduidelijken.
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Chapter 1

Historical introduction and
description of the main
results

In this chapter, we give an introduction to our work during the last 4 years.
We have two aims in this chapter. Firstly, we want to put our research into
a historical context, explaining the development of the subjects it is related
to. Secondly, we explain our results and the work it is based on and the
motivation to do research on these topics. We give a historical introduction to
the topics of von Neumann algebras in Section 1.1, (quantum) symmetries of
spaces in Section 1.2, and unitary representation theory in Section 1.3. The
last Section 1.4 describes our main results and indicated the common direction
of our the research. We give in particular a link between our work on von
Neumann algebras, measured equivalence relations and quantum groups. More
on potential links between the topics we treat in this thesis can be found in
Chapter 7. It is possible to directly jump to Section 1.4, skipping all historical
context.

1.1 Von Neumann algebras

Von Neumann algebras were introduced by Murray and von Neumann in a series
of papers starting in 1936 [139, 140, 228, 141]. As a motivation to introduce
them, they name problems in operator theory, the theory of unitary group
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2 HISTORICAL INTRODUCTION AND DESCRIPTION OF THE MAIN RESULTS

representations and quantum mechanics. A von Neumann algebra is a strongly
closed, unital *-subalgebra of the algebra BpHq of bounded linear operators
on a (complex) Hilbert space H. Von Neumann algebras have an algebraic
characterisation as those unital *-subalgebras of BpHq that are equal to their
bicommutant. If S denotes a subset of BpHq, then S 1 � tT P BpHq |ST �
TS for all S P Su is its commutant. The bicommutant of S is S2. Von Neumann
algebras can be characterised in the more algebraic context of C�-algebras.
A C�-algebra A is an normed *-algebra with isometric involution such that
}xx�} � }x}2 for all x P A. Sakai and Dixmier proved that a C�-algebra has
a faithful representation as a von Neumann algebra if and only if it is a dual
Banach space [65, 187]. If M is a von Neumann algebra, we denote by M� its
predual. The weak-* topology on a von Neumann algebra is called the σ-weak
topology and it plays an important role. The fact that von Neumann algebras
possess analytic and and algebraic characterisations is a strong indication that
they form an interesting and relevant class of objects.

By means of a direct integral decomposition, generalising direct sums, Murray
and von Neumann could reduce the study of general von Neumann algebras to
those which are simple, called factors. A factor M is characterised by the fact
that that it has a trivial centre C1 � ZpMq �M 1 XM .

Before we proceed, let us make the following common assumption.

Assumption. All von Neumann algebras considered in this work are supposed
to act on a separable Hilbert space.

1.1.1 Types classification of factors

There is a classification of factors in three different types and several subtypes.
Let us explain this classification. A projection in a von Neumann algebra M
is a self-adjoint idempotent p � p� � p2 P M . Thanks to the so called Borel
functional calculus, every von Neumann algebras contains an abundance of
projection. More precisely, the linear span of all projections in a von Neumann
algebra forms a norm-dense set. One important point in the theory of von
Neumann algebras is hence the investigation of projections and their relations
to each other. Two projections p, q P M are equivalent if there is an element
v P M such that vv� � p and v�v � q. If p, q P M are projections, we say
that p is bigger than q if p� q is still a projection. In this case we write p ¥ q.
A projection p P M is called minimal if all projections q P M , p ¥ q satisfy
q P t0, pu. A projection p PM is called finite if no projection p ­ q is equivalent
to p. Note that a minimal projection is finite. A von Neumann algebra is called
finite, if all its projections are finite. Assume that M is a factor.
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• M is of type I if it contains a minimal projection.

• M is of type II if it contains no minimal projection, but a finite projection.

• M is of type III if all of its non-zero projections are infinite.

If M is of type I then there is a unique n P NY t8u and minimal projections
ppiq0¤i n in M such that

°
0¤i n pi � 1, where the sum denotes the strong

limit of its finite partial sums. Given this cardinality, we say that M is of type
In. If M is of type II, it either contains an infinite projection or not. In the
former case, M is of type II8, in the latter it is of type II1.

There is an alternative characterisation of the different types of a von Neumann
algebra, that we are going to explain now. A state on a von Neumann algebra
is positive linear function ϕ : M Ñ C with norm 1. More precisely, a state ϕ
must satisfy φpx�xq ¥ 0 for all x PM and φp1q � 1. Weight theory generalises
the notion of states on von Neumann algebras [66, 207, 202, 47]. A weight on
a von Neumann algebra M is a positively homogeneous and additive function
ϕ : M� Ñ r0,�8s, where M� � tx�x |x PMu denotes the cone of all positive
elements in M . The weight ϕ is

• faithful, if ϕpx�xq � 0 implies x � 0;

• semifinite, if the set mϕ � tx P M |ϕpx�xq   �8u of all ϕ-2-integrable
elements is σ-weakly dense in M ;

• normal, if for any family of pairwise orthogonal projections ppiqi the
equality ϕp°i piq �

°
i ϕppiq holds, where

°
i pi is to be understood as a

strongly converging sum;

• tracial, if ϕpuxu�q � ϕpxq for all x PM� and all unitaries u P UpMq.

We abbreviate a normal semifinite faithful weight as an nsff weight. Note that a
state ϕ on M is equivalently described as a weight whose 2-integrable elements
are all of M and which satisfies ϕp1q � 1. Let M be a factor.

• M is of type In if and only if there is a tracial nsff weight ϕ on M such
that ϕpM�q � r0,�8s is a discrete set with exactly n� 1 elements.

• M is of type II1 if and only if it there is a normal tracial state ϕ on M
such that ϕpM�q is continuous.

• M is of type II8 if and only if there is a tracial nsff weight ϕ on M such
that ϕpM�q is continuous and contains �8.
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• M is of type III if there is no tracial nsff weight on M .

For simplicity we refer to a tracial state as a trace. Finiteness of von Neumann
algebras can be characterised by the existence of traces. A von Neumann algebra
is finite if and only if it admits a faithful normal and tracial state. Usually we
denote a trace by τ and if we want to fix a certain trace on a von Neumann
algebra, we speak about a tracial von Neumann algebra.

1.1.2 Construction of von Neumann algebras

If M and N are von Neumann algebras represented on Hilbert space H and K,
respectively, then we can form their tensor product MbN acting on H bK.
For all operators T PM , S P N the tensor product T b S � pT b 1qp1b Sq is a
bounded operator on H bK. We define

MbN � tT b S |T PM,S P Nu2 .

Another important construction for von Neumann algebras is the group von
Neumann algebra. Let G be a discrete group and denote by 2̀pGq the Hilbert
space with a preferred orthonormal basis pδgqgPG. The group von Neumann
algebra LpGq � λpGq2 of G is the smallest von Neumann algebra containing
the image of the left regular representation λ : GÑ Up 2̀pGqq. It is a factor if
and only if G is an icc group, that is every non-trivial conjugacy class of G is
infinite.

The crossed product von Neumann algebra of a discrete group acting on a von
Neumann algebra always contains a copy of the group von Neumann algebra.
Let M � BpHq be a von Neumann algebra and G a discrete group acting on M
via *-isomorphisms (these will be automatically continuous). Then M can be
represented on the Hilbert space tensor product 2̀pGq bH � 2̀pG,Hq via the
map π defined by pπpxqξqpgq � pg �xqξpgq. Then πpMq and 1bLpGq generate a
von Neumann algebra inside Bp 2̀pGq bHq, which is denoted by M �G. This
is the crossed product of M by the action of G.

A standard Borel space is the Borel space associated with some complete metric
space. A standard Borel space X together with a Borel probability measure µ on
X is called a standard probability measure space. In case G acts on a standard
probability measure space pX,µq in a non-singular way, that is it preserves the
measure class of µ, then G acts on L8pXq via the almost everywhere well defined
formula g �fpxq � fpg�1 �xq, for all g P G, f P L8pXq. We often do not mention
the measure µ explicitly and write Gñ X. The crossed product L8pXq �G is
called the group measure space construction of Gñ X. A non-singular action
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Gñ X is called free, if the set of fixed points of every element in G is negligible.
The action is ergodic, if every globally G-invariant measurable subset of X is
either negligible or co-negligible. Murray and von Neumann showed that a
group measure space construction of a free and ergodic non-singular action is a
factor.

1.1.3 Existence of different types of factors and reduction to
type II1 factors

Murray and von Neumann were able to show that all type In factors are
isomorphic with BpHq, where H is separable of dimension n. Using their
group measure space construction, they also gave examples of type II1, II8
and III factors. The type of L8pXq �G for a free ergodic non-singular action
G ñ pX,µq on a diffuse standard probability measure space is given by the
following criterion.

• L8pXq � G is a type II1 factor if G ñ X preserves some probability
measure in the measure class of µ.

• L8pXq �G is a type II8 factor if Gñ X preserves an infinite measure
in the measure class of µ.

• L8pXq � G is a type III factor if G ñ X admits no invariant measure
equivalent to µ.

This enabled Murray and von Neumann to give examples of all types of von
Neumann algebras.

Later, building on the modular theory of Tomita-Takesaki [207, 206, 202], the
work of Connes on type III factors [49] showed, that they are build up out of
type II factors in a sense which can be made precise. Since every II8 factor can
be written as a tensor product of a type II1 factor with Bp 2̀pNqq, the study of
von Neumann algebras can be theoretically reduced to the study of type II1
factors.

1.1.4 Isomorphism and non-isomorphism results for von Neu-
mann algebras

It is notoriously difficult to prove isomorphism or non-isomorphism results for
von Neumann algebras. The only two non-isomorphic II1 factors that Murray
and von Neumann were able to find, are the group von Neumann algebras
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LpS8q of the group of finite permutations of an infinite countable set and the
group von Neumann algebra LpF2q of the free group of rank two. In order to
distinguish them they used the concept of property Γ. A II1 factor M with
trace τ has property Γ if there is a sequence of unitary elements punqn in M
such that τpunq � 0 for all n P N and run, xs Ñ 0 strongly for all x P M .
Such a sequence is called a non-trivial central sequence. It was shown that
LpS8q has property Γ, while LpF2q does not. Only 30 years later, in 1969,
McDuff published a proof of the fact that there are uncountably many pairwise
non-isomorphic II1 factors [136], see also [188] for a similar result of Sakai. Note
that in 1967, Powers already showed that there are uncountably many pairwise
non-isomorphic factors of type III [179].

Isomorphism and non-isomorphism of von Neumann algebras can be studied in a
systematic way. A surprising isomorphism between von Neumann algebras is an
isomorphism that it is not coming from any classical source. An instance of such
surprising isomorphisms is the uniqueness of the amenable II1 factor explained
in Section 1.1.5. Proving such isomorphism results for von Neumann algebras
follows the general strategy that flexibility of a measure theoretic setting can
be used to overcome difficult algebraic problems. This thought goes hand in
hand with structural and rigidity results for von Neumann algebras, allowing to
recover information about classical structures from the von Neumann algebraic
setting. Classification results in terms of classical data are an instance of such
type of results, of which the most striking one is W�-superrigidity as explained
in Section 1.1.6. As we will explain there, it is naturally linked to the notions
strong solidity and uniqueness of Cartan subalgebras, two notions which became
focal points of research in II1 factor theory during the last decade.

1.1.5 Surprising isomorphism results for von Neumann alge-
bras

Isomorphism results make use of the extraordinary flexibility of von Neumann
algebras. Since they are of a measure theoretic nature, cut and paste arguments
with projections can give rise to unexpected isomorphism between von Neumann
algebras. The first such isomorphism result is the uniqueness of the hyperfinite
II1 factor R shown by Murray and von Neumann. A von Neumann algebra
M is hyperfinite, if there is an ascending sequence of finite dimensional von
Neumann subalgebras pAnqn inside M such that M is the strong closure of�
nAn. It follows, for example, that all group von Neumann algebras of locally

finite icc groups are isomorphic with R, which is unexpected from an algebraic
point of view.

In the 70’s Connes showed that hyperfiniteness is equivalent to injectivity of a von
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Neumann algebra [52]. This was a major advance in the study of von Neumann
algebras. In particular, his work has consequences for the study of group von
Neumann algebras and group measure space constructions. A group Γ is called
amenable, if there is a Γ-invariant state on `8pΓq. Since the group von Neumann
algebra of a discrete group is injective if and only if the group is amenable,
Connes’s work implies that a group von Neumann algebra of a discrete group is
hyperfinite if and only if the group is amenable. Also the group measure space
construction associated with a probability measure preserving (pmp) action
is hyperfinite if and only if the acting group is amenable. In particular, all
group von Neumann algebras of icc amenable groups are isomorphic to R and
so are all group measure space constructions associated with free ergodic pmp
actions of amenable groups. In what follows, we will use the terms amenable
von Neumann algebra and injective von Neumann algebra interchangeably.

Another source of unexpected isomorphism results for von Neumann algebras
is free probability theory. Given a non-zero projection in a free group factor,
p P LpFnq, Rădulescu [181] and Dykema [73] proved independently that the
isomorphism class of the compression pLpFnqp does only depend on the number
t � 1� pn� 1q{τppq2. The resulting von Neumann algebra is denoted by LpFtq
and we call it an interpolated free group factor. Let us mention the famous
free group factor isomorphism problem, asking whether LpFnq is isomorphic
to LpFmq for n � m. By the work of Dykema and Rădulescu it follows
that either all free group factors are pairwise non-isomorphic or all pairwise
isomorphic. Dykema developed techniques based on random matrices to show
that many free products and free amalgamated products of von Neumann
algebras are isomorphic to interpolated free group factors. See for example
[71, 76]. Alongside, the work of Shlyakhtenko on von Neumann algebras
generated by operator-valued semicircular elements [224, 200, 194] forms another
source of unexpected isomorphisms with free group factors.

Exploiting the isomorphism results explained before, we show in Chapter 5 that
certain crossed products of free group factors by an action of the integers are
also isomorphic with an interpolated free group factor. We give a more detailed
introduction to our results in Section 1.4.

In Chapter 3, we give a new proof for another type of unexpected isomorphism
results. Many actions of finite rank free groups are isomorphic to Bernoulli
actions and the latter give rise to stably isomorphic group measure space
constructions. These results where proved before by Bowen, using different
methods [40, 41].
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1.1.6 Structural theory and non-isomorphism results for von
Neumann algebras

Invariants of II1 factors

It is very difficult to distinguish two von Neumann algebras. This became already
apparent in the work of Murray and von Neumann and is further supported by
the unexpected isomorphism results described in Section 1.1.5. On the other
hand, at least conjecturally, a lot of von Neumann algebras constructed from
classical data should completely remember this initial data. Let us for the
moment only mention Connes’ conjecture, which claims that the group von
Neumann algebras of two icc property (T) groups can only be isomorphic if the
groups are isomorphic. Recall in this context, that a group G has property (T),
if every unitary representation π of G that contains a sequence of unit vectors
pξnqn such that }πpgqξn � ξn} Ñ 0 for all g P G already contains an invariant
unit vector.

One possible approach to distinguishing von Neumann algebras are invariants.
Murray and von Neumann introduced the fundamental group FpMq of a II1
factor M . It is defined by

FpMq � tτppq{τpqq | p, q PM projections and pMp � qMqu � R¡0 .

Alternatively, we have

FpMq � tt P R¡0 |M �M tu � R¡0 ,

where M t is the amplification of M by t defined as ppMnpCq bMqp for some
n P N and p P MnpCqbM with pTrbτqppq � t. Note that the isomorphism class
of this factor does not depend on the concrete choice of n and p. Murray and
von Neumann could prove that FpRq � R¡0, using the fact that the hyperfinite
II1 factor is unique. Using this fact, it also follows that every II1 factor M
satisfying MbR � M has full fundamental group. Such factors are called
McDuff factors in honour of her work on a characterisation of McDuff factors by
means of central sequences [137], which we are going to explain in Section 1.1.6.

Only in the 70’s Connes proved that there are II1 factors which have a
fundamental group not equal to R¡0. Namely, he showed that every II1 factor
with property (T) has a countable fundamental group. His results did not give
a concrete calculation of any fundamental group.

Only the advent of Popa’s deformation/rigidity theory [165, 164, 166, 167]
made the first calculation of a fundamental group not equal to R¡0 possible
[164]. His work is the basis of the majority of modern structural results,
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calculations of invariants and non-isomorphism results for von Neumann
algebras. Let us explain the basic idea of deformation/rigidity theory. A
deformation of a von Neumann algebra is a sequence of completely positive
maps, which converges to the identity pointwise σ-weakly. There are many
different sources of deformations, most notably property (H) [165] and Popa’s
malleable deformations [166, 167]. A deformation of a von Neumann algebra is
opposed to some rigidity property of its subalgebras forcing the deformation
to converge uniformly on the unit ball of such a subalgebra. The choice of a
structurally relevant deformation and the identification of rigid parts of a von
Neumann algebra, often allow one to identify the position of the latter in the
sense of Popa’s intertwining by bimodules introduced in [166]. If A,B � M
are von Neumann subalgebras of a tracial von Neumann algebra, we say that
A embeds into B inside M , if there is a *-homomorphism φ : A Ñ pBnp, a
non-zero partial isometry v P M1�npCq bM such that vφpxq � xv for all x P A.
We write A  M B in this case.

Popa’s techniques were used in [166] to give examples of II1 factors with arbitrary
countable fundamental group. Later, in [176, 178], his methods were further
developed, so that Popa and Vaes were able to give examples of II1 factors with
prescribed fundamental group from a big class of subgroups of R¡0 containing
groups of arbitrary Hausdorff dimension. However, there is no conjectural result
on all possible fundamental groups of II1 factors.

The outer automorphism group of M is defined as OutpMq � AutpMq{InnpMq.
It was a long standing open question of Connes, whether there are II1 factors
that have only inner automorphisms. This question was settled by Ioana,
Peterson and Popa in [117], where they prove that actually every abelian second
countable compact group can arise as the outer automorphism group of a II1
factor. Their results are based on deformation/rigidity techniques applied to
amalgamated free products. The relevant deformation for amalgamated free
products is the length deformation. It can be roughly described as deforming
a word the stronger the more alternating letters from the two factors of the
product it has. The results of Ioana, Peterson and Popa were generalised by
Vaes, and Falguières and Vaes in two directions. On the one hand, Falguières
and Vaes proved in [86] that any, not necessarily abelian, second countable
compact group can arise as the outer automorphism group of a II1 factor. On
the other hand, the methods of Ioana, Peterson and Popa were developed so as
to control bimodule categories of II1 factors. It is characteristic of the method
employed by Ioana, Peterson and Popa, that the resulting II1 factors are not
explicit. Only the existence of a factor with a prescribed outer automorphism
group is proven making use of a Baire category argument. Likewise, all results
based on their methods are non-explicit.

Given two von Neumann algebras N and M , an M -N -bimodule MHN is a
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Hilbert space H with a normal *-homomorphism π : M Ñ BpHq and a
normal *-antihomomorphism ρ : N Ñ BpHq such that πpxqρpyq � ρpyqπpxq
for all x P M and y P N . Assume that M is equipped with a tracial
state τ . It is known that every left M -module MH is isomorphic to
p 2̀pNq b L2pM, τqqp for some projection p P Bp 2̀pNqqbM . The dimension
of MH is defined as pTrbτqppq, where Tr denotes the non-normalised trace
on Bp 2̀pNqq. Similarly, the dimension of a right M -module is defined. If M
and N are tracial von Neumann algebras, an M -N -bimodule MHN has finite
Jones index if dim�N pHq   �8 and dimM�pHq   �8. Its Jones index is
defined and IndexpHq � dimM�pHq dim�N pHq. The class of all finite index
M -M -bimodules together with M -M -bimodular, bounded maps as morphisms
forms a category BimodpMq with the follow properties.

• BimodpMq is an abelian category.

• The Hom-spaces in BimodpMq are Banach spaces when equipped with
the operator norm.

• The adjoint of a linear operator defines a contavariant functor � :
BimodpMq Ñ BimodpMq, which fixes all objects and satisfies }T�T } �
}T }2 for all morphisms T .

These properties are summarised by saying that BimodpMq is a C�-category.
There is also a monoidal structure on BimodpMq given by the Connes tensor
product bM . Its unit is the trivial bimodule L2pMq. This monoidal structure
enjoys the following properties.

• The functor bM : BimodpMq � BimodpMq Ñ BimodpMq is bi-linear.
• The associator and the unit isomorphism of bM are unitary with respect

to the functor �.

We say that BimodpMq is a tensor C�-category. There is one last piece of
structure on BimodpMq that we want to mention.

• For every object H P BimodpMq the conjugate bimodule H with left and
right M -action xξy � y�ξx� defines a conjugate for H. That is, there are
morphisms R : L2pMq Ñ HbM H and R : L2pMq Ñ HbM H satisfying

H idbRÝÑ HbM HbM H R
�bidÝÑ H � idH

and
H idbRÝÑ HbM HbM H R�bidÝÑ H � idH .
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All the properties above, make BimodpMq a compact tensor C�-category. The
relevance of BimodpMq stems from the fact that it encodes several other
invariants of a von Neumann algebra and moreover is an interesting invariant
in its own. The fundamental group and the outer automorphism group of
a II1 factor M are encoded in the bimodule category BimodpMq as follows.
The Jones index of a bimodule can be recovered from the compact tensor
C�-category structure of BimodpMq. For example, if MHM is an irreducible
bimodule and R,R are its conjugate morphisms, then R� � R is a element of
HompL2pMq,L2pMqq � C and IndexpHq � idL2pMq � R� � R. An irreducible
bimodule MHM is called invertible if IndexpHq � 1 and the isomorphism classes
of invertible elements in BimodpMq form a group with respect to bM . We
denote this group by GrppMq. The link between the fundamental group and
the outer automorphism group of the II1 factor M is described by the following
short exact sequence

1 Ñ OutpMq Ñ GrppMq Ñ FpMq Ñ 1 ,

where the morphism GrppMq Ñ FpMq is given by the rightM -dimension. Note
also that GrppMq � OutpM8q . Another invariant, which is reflected in the
bimodule category is the lattice of irreducible subfactors of M (Propositon
4.4.8). A systematic theory of subfactors was initiated by Jones in [125]. The
study of subfactors can be considered as an implementation of Klein’s Erlangen
programme for factors. Indeed, every homomorphism between factors is injective
and hence the study of subfactors is the same as studying homomorphisms
between factors. We say that a subfactor N �M is irreducible, if N 1XM � C1.
In some cases, the short exact sequence above allows one to recover Jones
invariant [125]

CpMq � tλ P R¡0 | there is an irreducible subfactor N �M with index λu ,

if one can calculate the category of bimodules of a II1 factor. We will do this in
Chapter 4. See also Section 1.4.3 for another calculation of CpMq.
Vaes showed in [216] that there is a II1 factor M for which BimodpMq contains
only multiples of the trivial bimodule. It follows that every subfactor N �M
is isomorphic to N � MnpCq b N for some n P N. This result was followed
up by work of Falguières and Vaes [87], showing that the category of finite
dimensional unitary representations of any compact second countable group
can be realised as the bimodule category of a II1 factor. Note that by the
work of Doplicher and Roberts, these categories are exactly the symmetric
compact tensor C�-categories [67]. In our work with Falguières presented in
Chapter 4, we show that many other compact tensor C�-categories can arise
as the bimodule category of a II1 factor. The class we consider contains all
finite tensor C�-categories, that is compact tensor C�-categories with finitely
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many isomorphism classes of irreducible objects, as well as the categories of
finite dimensional unitary corepresentations of many discrete quantum groups,
including all discrete groups. The fact that corepresentations of discrete quantum
groups play a role in the study of bimodule categories of II1 factors, is not
surprising and will be explained in Section 1.2.

Falguières, Vaes and ourselves are only able to prove the existence of II1 factors
with prescribed invariants, relying on the approach and the methods of Ioana,
Peterson and Popa. Based on Popa’s deformation/rigidity results for crossed
product von Neumann algebras, Vaes could, however, find explicit examples of
II1 factors for which he calculated the fusion rules of their bimodule category
[215]. In particular, he could show that every countable group is the outer
automorphism group of an explicitly described II1 factor. Later Deprez and Vaes
[64] were able to describe the complete bimodule category of explicit II1 factors.
They also obtained calculations of CpMq, for certain II1 factors M , proving in
particular that CpMq can be any set of natural numbers that is closed under
taking divisors and least common multiplies. In contrast to these results, our
results with Falguières in Chapter 4 give an example of CpMq being completely
calculated and containing irrational numbers. For completeness, let us also
mention that Deprez continued his work on explicit examples of II1 factors,
finding concrete calculations of fundamental groups and outer automorphism
groups [62] as well as endomorphism semigroups [63].

Structural results for II1 factors

The study of property Γ by Murray and von Neumann as well as the results
of McDuff on McDuff factors [137] can be considered the starting point of
a structural theory of II1 factors. In the latter work, it is proven that a II1
factor M tensorially absorbs the hyperfinite II1 factor, if and only if it has
non-hypercentral central sequences, or expressed in a more modern language,
if and only if the asymptotic centraliser M 1 XMω is not abelian. Here, ω
denotes a non-principle ultrafilter and Mω is the tracial ultrapower of M . This
result was a important ingredient of Connes’s proof of the uniqueness of the
hyperfinite II1 factor [52] several years later. Connes showed in particular, that
the group von Neumann algebra LpF2q can be embedded into any ultrapower
of the hyperfinite II1 factor. This lead him to ask whether every II1 factor
is embeddable into an ultrapower of R, a question which became known as
Connes’s embedding problem and which currently attracts strong interest due to
its links with several other fields of mathematics [154]. Note that the uniqueness
of the ultrapower of R is equivalent to the continuum hypothesis by [88]. The
work of Connes [50] also showed that a II1 factor does not have property Γ if
and only if it is full. A von Neumann algebra M is called full, if the group of
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its inner automorphisms is closed in the group of all automorphisms equipped
with the pointwise convergence in norm on the predual M� of M . The study
of ultrapower algebras of II1 factors remains important until the present day
[114, 172]. See also [3] for a recent work about ultrapower algebras of type III
von Neumann algebras including a survey on developments in this area.

In II1 factor theory, there are several constructions of new von Neuamnn algebras
out of other ones or out of classical data. Among these, we already mentioned the
group von Neumann algebras, the group measure space construction and tensor
products of von Neumann algebras in Section 1.1. Since all these constructions
have direct implications for the structure of their output von Neumann algebras,
it is natural to ask, whether a II1 factor arises this way. More generally, one
asks if any amplification of a given II1 factor can arise by means of the above
constructions. The first result in this direction was the proof of existence
of a factor which is not anti-isomorphic to itself by Connes in [51]. Such a
factor cannot be the amplification of any group von Neumann algebra, since
the map G Q g ÞÑ g�1 induces an anti-isomorphism of LpGq with itself. The
first examples of II1 factors that cannot be written as tensor products nor as
a group measure space construction were the free group factors. A II1 factor
is called prime, if it cannot be written as a tensor product of two other type
II1 factors. Ge proved in [100] that the free group factors are prime. In earlier
work, Voiculescu already showed that the free group factors do not contain
any Cartan subalgebra [225]. A Cartan subalgebra A of a II1 factor M is a
maximally abelian subalgebra such that the group of normalising unitaries
NM pAq � tu P UpMq |uAu� � Au generates M as a von Neumann algebra. If
L8pXq �G is a group measure space construction, then L8pXq � L8pXq �G
is a Cartan subalgebra. A Cartan subalgebra arising this way is called group
measure space Cartan. Since every amplification of a group measure space
construction contains a Cartan algebra, interpolated free group factors LpFtq
cannot be obtained as a group measure space construction.

In the context of Popa’s deformation/rigidity theory, both primeness and absence
of Cartan algebras found a more systematic treatment via the notions of solidity
and strong solidity, respectively. A finite von Neumann algebraM is called solid,
if the relative commutant A1XM of any diffuse von Neumann subalgebra A �M
is amenable. We call M strongly solid, if the normaliser NM pAq2 of any diffuse
amenable von Neumann subalgebra A � M is amenable. Note that strong
solidity implies solidity. Indeed, if M is strongly solid and A � M is diffuse,
then A contains a diffuse, amenable subalgebra B. Since A1 XM � NM pBq2, it
follows that M is solid. The notion of solidity was introduced by Ozawa in [153],
while strong solidity was introduced by Ozawa and Popa in [155]. It is easy to
see that every non-amenable finite von Neumann algebra that is solid, must be
prime. Even more is true. Any non-amenable von Neumann subalgebra of a
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solid von Neumann algebra is prime. This clarifies the structural importance of
this notion. Similarly, no non-amenable von Neumann subalgebra of a strongly
solid von Neumann algebra contains a Cartan algebra. While the original proof
of Ozawa for solidity of the free group factors [153] used C�-algebraic techniques,
Popa could put this result into the framework of his deformation/rigidity theory
[170], which paved the way for the work of Ozawa and Popa on strong solidity of
the free group factors [155]. Ozawa and Popa also show that any group measure
space construction M � L8pXq � Fn of a free ergodic profinite action of a
free group with finite rank has the following property. Every diffuse amenable
subalgebra A �M either has an amenable normaliser or it embeds into L8pXq
in the sense of Popa’s intertwining by bimodules. The results of Ozawa and
Popa were extended further to hyperbolic groups [46] by Chifan and Sinclair.
This development culminated in the work of Popa and Vaes [173, 174] showing
that any trace preserving action of a hyperbolic group Γ on a von Neumann
algebra B gives rise to a crossed product M � B � Γ satisfying the following
dichotomy. Whenever A �M is a diffuse subalgebra that is amenable relative
to B [160, 2, 155], then either the normaliser of A is amenable relative to B or
A embeds into B inside M . Note that this is a structural result of the strongest
known kind, which holds for arbitrary crossed products by a trace preserving
action. In particular, the result of Ozawa and Popa is extended to arbitrary
free ergodic pmp actions of free groups of finite rank. In the proof of Popa and
Vaes, deformation/rigidity techniques are combined with Ozawa’s idea from
[153] to exploit special boundary actions of hyperbolic groups. But C�-algebraic
techniques are avoided. Let us mention that the results of Ozawa and Popa and
Popa and Vaes have major consequences for the study of the relation between
group actions and their associated group measure space constructions. We will
explain the relevant term W�-superrigidity in Section 1.1.6.

Another interesting class of II1 factors for which structural results could be
obtained are so called free Bogoliubov crossed products. Shlyakhtenko’s
free Krieger algebras link them to finite corners of continuous cores of
free Araki-Woods factors. Voiculescu introduced the free Gaussian functor
[223], which associates with a real Hilbert space HR a free group factor
ΓpHRq2 � LpFdimHR

q. Denote by H the complexification of HR and by
FpHq � CΩ`À

n¥1H
bn the full Fock space of H. Then every vector ξ P HR

defines a creation operator lpξq on FpHq defined by

lpξqΩ � ξ and lpξqξ1 b � � � b ξn � ξ b ξ1 b � � � b ξn .

Voiculescu showed that the operator spξq � plpξq � lpξq�q{2 has a semicircular
distribution with variance }ξ}2. Furthermore, if pξiqi is an orthogonal family
of non-zero vectors in HR, then pspξiqqi is free in the sense of free probability
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theory [226]. It follows that
ΓpHRq2 � tspξq | ξ P HRu2 � LpFdimHR

q .
Voiculescu’s construction was the starting point of two different developments.
On the one hand Shlyakhtenko introduced in [192] free Araki-Woods factors
and on the other hand orthogonal representations were used to construct free
Bogoliubov crossed products. Let us first explain free Araki-Woods factors.
Given a one-parameter group pUtqtPR of orthogonal transformations of a real
Hilbert space HR, we can modify the scalar product on the complexification HC

of HR in the following way. Extend Ut by linearity to HC. Then, by Stone’s
theorem, there is an unbounded selfadjoint and positive operator A on HC such
that Ut � exppiAtq for all t P R. Shlakhtenko showed that

xξ, ηyU �
B

2
1� expp�Aqξ, η

F
.

is a well defined inner product on HC. Denoting the completion of HC with
respect to x�, �yU by H, we can again consider the full Fock space FpHq and
the left creation operators lpξq, ξ P HR. Wrting spξq � plpξq � lpξq�q{2,
the von Neumann algebra ΓpHR, pUtqq2 � tspξq | ξ P HRu is called the free
Araki-Woods factor associated with pHR, pUtqq. Shlyakhtenko proved that
free Araki-Woods factors are indeed factors and that they are of type III
for all non-trivial one-parameter groups pUtq. A one-parameter group pUtq
is called almost periodic if the operator exppAq defined above has pure point
spectrum. Shylakhtenko classified free Araki-Woods factors associated with
almost periodic one-parameter groups, showing that they are distinguished
exactly by the subgroup of R¡0 generated by the eigenvalues of exppAq. However,
the classification of other Araki-Woods factors proved to be difficult [195],
although Houdayer [108] and Houdayer and Ricard [111] could obtain structural
results for all free Araki-Woods factors and their continuous cores using Popa’s
deformation rigidity techniques.

Voiculescu’s free Gaussian functor is functorial for isometries between real
Hilbert spaces. Consequently, every representation π : GÑ OpHRq of a discrete
group by orthogonal transformations on a real Hilbert space, gives rise to an
action of Γ on the free group factor ΓpHRq2, which is called a free Bogoliubov
action. The crossed product ΓpHRq2 � G is denoted by ΓpHR, G, πq2 and we
call it a free Bogoliubov crossed product. Since free Bogoliubov actions form a
large class of actions on free group factors, it is natural to study them. Since
the word length deformation on free group factors [165] is very strong, also here
Popa’s deformation/rigidity theory can be used to obtain structural results, as
done by Houdayer and Shlyaktenko and Houdayer [112, 106, 105].

As described in [112], the point of contact between free Bogoliubov crossed
products and free Araki-Woods factors are Shlyakhtenko’s free Krieger algebras
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[194]. Free Krieger algebras are von Neumann algebras generated by an
operator-valued semi-circular distributed element with values in a commutative
von Neumann algebra. Operator valued free probability was developed by
Voiculescu and Speicher in [224] and [200]. If A � M is an inclusion of von
Neumann algebras with conditional expectation E : M Ñ A, and η : AÑ A is a
completely positive map, then an element X PM is called A-valued semicircular
with distribution η, if EpXq � 0, EpXaXq � ηpaq for all a P A and all higher
A-valued moments EpXa1Xa2X � � �XanXq of X can be described in terms of η
by means of Speichers operator-valued free cumulant formalism. The free Krieger
algebra generated by an A-valued semicircular element with distribution η is
denoted by ΦpA, ηq. Shlyakhtenko proved in [193] that the continuous cores of
free Araki-Woods factors can be represented by free Krieger factors ΦpL8pRq, ηq.
At the same time, it is observed in [112], that free Bogoliubov crossed products
associated with orthogonal representations of the integers are free Krieger factors
ΦpL8pS1q, ηq. This explains the interest in the special case of free Bogoliubov
crossed products by the integers. In Chapter 5, we obtain isomorphism and
non-isomorphism results as well as structural results for these free Bogoliubov
crossed products, the aim being to give a characterisation of strong solidity for
and a classification of ΓpHR,Z, πq2 in terms of properties of π.

1.2 (Quantum) Symmetries of measure spaces

All abelian von Neumann algebras are of the form L8pXq for a standard
measure space X. This motivates the idea to consider the theory of von
Neumann algebras as non-commutative measure theory. Also, von Neumann
algebras are the natural framework for non-commutative integration theory
[206, 207, 202, 47, 48], supporting this point of view. If Gñ X is an ergodic
action of a discrete group on a standard measure space, then the quotient
space X{G behaves pathologically. In order to circumvent this problem, one
considers the group measure space construction of the action instead. One can
also consider the measurable equivalence relation RpGñ Xq on X described
by x � g � x. As Singer showed in [196], RpGñ Xq is an intermediate object
between G ñ X and L8pXq � G in the following precise sense. Two actions
Gñ X and H ñ Y admit an isomorphism between L8pXq�G and L8pY q�H
sending the Cartan algebra L8pXq onto L8pY q, if and only if the equivalence
relations RpGñ Xq and RpH ñ Y q are isomorphic. The theory of measurable
equivalence relations became an active field of research after the discovery of
Singer starting with the work of Dye on orbit equivalence of free ergodic pmp
action of the integers [69, 70]. See [94, 97] for recent surveys of the topic. As
mentioned in Section 1.1.5 Connes proved that any free ergodic pmp action of
an infinite amenable gorup gives rise to the hyperfinite II1 factor as its group
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von measure space construction. Connes, Feldman and Weiss strengthened
this result and proved that such an action already gives rise to the ergodic
hyperfinite II1 equivalence relation [55] - an extension of a result by Ornstein
and Weiss [151]. When studying the dependence of L8pXq �G on the action
Gñ X, it is hence natural to split the problem into two parts. There are three
natural types of equivalence for free ergodic actions. Two free ergodic pmp
actions Gñ X and H ñ Y are

• conjugate, if there are isomorphisms δ : G Ñ H and ∆ : X Ñ Y such
that for all g P G and almost every x P X, we have ∆pg � xq � δpgq �∆pxq;

• orbit equivalent, if their orbit equivalence relations are isomorphic;

• W�-equivalent, if their group measure space constructions are isomorphic.

In the context of Popa’s deformation/rigidity theory, W�-superrigid actions
became a much-studied topic. A free ergodic pmp action G ñ X is called
W�-superrigid if any other free ergodic pmp action that is W�-equivalent to
Gñ X is already conjugate to it. By the result of Singer, this problem naturally
splits into an orbit equivalence rigidity result combined with a uniqueness of
group measure space Cartan algebra result. While orbit equivalence superrigidity
results were known since [93], only in [177], Popa and Vaes were able to find
the first W�-superrigid group actions. Many other W�-superrigidity results
followed [110, 116, 38]. However, as explained in Section 1.1.5, there are not
many isomorphism results for von Neumann algebras, including the group
measure space constructions. Proving orbit equivalence of two free ergodic pmp
actions is one way to establish new isomorphism results for II1 factors. In [40]
Bowen proved that all Bernoulli shifts of a fixed free group with finite rank
are pairwise orbit equivalent, showing in particular that the associated group
measure space constructions are isomorphic. For different ranks of the free
groups, two free ergodic actions of free groups can never be orbit equivalent, as
it is shown by Gaboriau’s work on L2-Betti numbers and cost of equivalence
relations [95, 96]. However, in [41] Bowen shows that all Bernoulli shifts of all
finitely generated free groups are pairwise stably orbit equivalent. This shows
also that the associated group measure space constructions are pairwise stably
isomorphic. Note that by [173], two stably W�-equivalent actions of finitely
generated free groups are stably orbit equivalent. In Section 3, we give an
elementary proof of Bowen’s results. Moreover, we show that many quotients
of Bernoulli shifts of free products of amenable groups are conjugate to plain
Bernoulli shifts.

Passing from usual to quantum symmetries of spaces, one naturally considers
quantum group actions. A compact quantum group in the sense of Woronowicz
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[233, 236] is a C�-algebra A equipped with a �-homomorphism ∆ : AÑ AbA
such that p∆ b idq � ∆ � pid b ∆q � ∆ and A b A � span ∆pAqpA b 1q �
span ∆pAqp1bAq. Compact quantum groups in the operator algebraic setting
are an established notion for two reasons. Firstly, a natural development of their
basic theory, including a construction of a Haar state, is possible. Secondly, a
characterisation of Woronowicz’s compact quantum groups in terms of concrete
compact tensor C�-categories by means of a Tannaka-Krein type duality [234]
gives a point of view independent of operator algebras. Kustermans and Vaes
defined locally compact groups in [131]. Although they have to assume the
existence of Haar weights, their definition allows for a deep and naturally
developed theory [212, 213, 5, 60, 126]. In particular, many inclusions of von
Neumann algebras can be described by crossed products with locally compact
quantum groups [79] or more generally with measured quantum groupoids
[147, 80, 77, 78]. This shows that Vaes-Kustermans locally compact quantum
groups are a correct notion within the framework of operator algebras. In
Chapter 4, we prove that the category of unitary corepresentations of a discrete
quantum group A acting strictly outerly [213] on a II1 factorM can be retrieved
by means of bimodules in the inclusion M � A � M � A � pA. This result
is most probably folklore - see [121] for related results. The correspondence
between categories of corepresentations and bimodule categories is interesting
in connection with the study of invariants of von Neumann algebras.

As explained in the last paragraph, actions of quantum groups can be used to
obtain information about von Neumann algebras or to construct them. Vice
versa, quantum group actions can be used to find new examples of quantum
groups via the construction of quantum isometry groups. After work of Banica
[11, 10] and Bichon [34] on quantum isometry groups of finite structures, in
[102], Goswami introduced quantum isometry groups in the context of Connes’s
spectral triples [53, 54]. His definition was later generalised in [20]. Despite
several computations of quantum isometry groups [33, 32, 20], it remained a
difficult task to obtain calculations of non-classical quantum isometry groups.
In Chapter 6, we show in particular that many new quantum groups can be
obtained as quantum isometry groups of certain maximal group C�-algebras.

1.3 Unitary representation theory of quantum groups
and tensor categories

It is an old idea to study mathematical objects through their categories of
representations. As already mentioned, a compact quantum group in the sense
of Woronowicz is even completely determined by its concrete tensor C�-category
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of finite dimensional unitary corepresentations. In the classical setting, Doplicher
and Roberts were able to characterise the abstract compact C�-categories that
arise as categories of finite dimensional unitary representations of a compact
group. They are exactly the symmetric compact tensor C�-categories [67].
Note, however, that the symmetric structure of a compact tensor C�-category,
if it exists, does not need to be unique - even if the the tensor category is
finite [82, 59, 120]. Using the fact that all unitary representations of a finite
compact quantum group have integer dimensions, one can show that there are
tensor C�-categories not arising as the category of unitary representations of a
compact quantum group. The question of which compact tensor C�-categories
can be obtained as categories of finite dimensional unitary corepresentations of
a compact quantum group is an active field of research [159].

In [24] Banica and Speicher approached to relation between compact quantum
groups and tensor C�-categories from the categorical point of view. Making
use of Speicher’s formalism of crossing and non-crossing partitions [145],
which proved successful in free probability theory, they define concrete tensor
C�-categories and consider the compact quantum groups associated with them
by Woronowicz’s Tannaka-Krein theorem. They call the quantum groups
that they obtain easy quantum groups, although combinatorial quantum
groups would probably be a more suitable term. Easy quantum groups are in
particular quantum subgroups of Wang’s universal free quantum groups Aopnq,
hence their C�-algebra A is generated by elements of an orthogonal matrix
u � puijq � pu�ijq P MnpAq. The class of easy quantum groups is interesting
for two reasons. Firstly, the successful application of combinatorial arguments
involving partitions in free probability theory by the work of Speicher gave
rise to connections between free probability theory and easy quantum groups
[15, 129, 18, 19]. Secondly, easy quantum groups are a priory of a completely
different nature than all other known classes of compact quantum groups, which
potentially yields new phenomena in the study of their representation theory
and the associated operator algebras. Easy quantum groups were divided by
two properties. An easy quantum group is called half-liberated if its generating
elements satisfy uijuklunm � unmukluij . All half-liberated easy quantum groups
where classified in [232]. An easy quantum group is called hyperoctahedral if
its generating elements uij are partial isometries. All non-hyperoctahedral easy
quantum groups were classified in [17, 232]. In Chapter 6, we introduced the
notion of simplifiable easy quantum groups. A hyperoctahedral easy quantum
group is simplifiable if the squares of its generating entries u2

ij are central. We
showed that the class of simplifiable easy quantum groups is not amenable to
classification, by giving a concrete bijection between the lattice of simplifiable
easy quantum groups and lattice of reflection groups. This shows on the one
hand that the class of easy quantum groups is much richer than previously
expected [17] and on the other hand it gives a concrete perspective to approach
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problems about the representation theory of easy quantum groups for example
via word counting arguments in groups.

Many results on the structure of a compact quantum group are based on the
knowledge of its fusion rules, that is the fusion rules of its category of finite
unitary dimensional corepresentations [8, 18, 15, 42, 91, 119]. While the fusion
rules for q-deformations of classical compact Lie groups [122, 68, 186] are the
same as for their classical counterparts, in other cases it is not clear how to
calculate them. Banica gave a calculation of the fusion rules of Wang’s and
van Daele’s free orthogonal and free unitary quantum groups [230, 219] in
[7, 8]. His proof was of a combinatorial kind and could be adapted to other
classes of quantum groups in [9, 25, 26, 13]. Denote by Aspnq Wang’s quantum
permutation group [231]. Then a quantum group A is called free according
to [13], if Aupnq Ñ AÑ Aspnq and the category of finite dimensional unitary
corepresentations of A has a combinatorial description similar to that one of
easy quantum groups. In Chapter 2, we used Banica’s free complexification of
an orthogonal quantum group [12] and some elementary isomorphism results in
order to obtain more calculations of fusion rules in the class of free quantum
groups.

1.4 Description of our main results

1.4.1 Isomorphisms and fusion rules of orthogonal free quan-
tum groups and their free complexifications

This section describes our work in Chapter 2. Let us briefly recall some facts
mentioned in Sections 1.3 and 1.2. In [230], Wang defined the free unitary and
the free orthogonal quantum groups. The free unitary quantum group is defined
as the universal C�-algebra

Aupnq � C�puij , 1 ¤ i, j ¤ n |u � puijq and u � pu�ijq are unitaryq ,

while the free orthogonal quantum group is given by

Aopnq � C�puij , 1 ¤ i, j ¤ n |u � u is unitaryq .

Both are matrix quantum groups in the sense of Woronowicz [233, 235], meaning
that there is a *-homomorphism ∆ : A�pnq Ñ A�pnq bmin A�pnq which satisfies
∆puijq �

°
1¤k¤n uik b ukj and that u, u are invertible. Later, in [231], Wang

defined the quantum permutation group

Aspnq � C�puij , 1 ¤ i, j ¤ n |u � u unitary and all uij are projectionsq .
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Let us define a last quantum group, the hyperoctahedral quantum group. It is
given by

Aspnq � C�puij , 1 ¤ i, j ¤ n |u � u unitary and all uij are partial isometriesq .

The categories of finite dimensional unitary representation UCorepp�q of these
quantum groups can be described combinatorially by means of Speicher’s
partitions [145]. One says that the intertwiner spaces of A�pnq are “spanned
by partitions”. This was taken as a definition in [13]: a compact matrix
quantum group (CMQG) pA, uq with u of size n � n is called free, if the
canonical homomorphism Aupnq Ñ Aspnq factors through pA, uq and UCoreppAq
is spanned by partitions. A CMQG is called orthogonal free if it is free and it
is a quotient of Aopnq. It was shown in [24, 232], that there are exactly seven
orthogonal free quantum groups.

Isomorphism classes of finite dimensional unitary corepresentations of a compact
quantum group A form a based semi-ring with basis given by isomorphism
classes of irreducible elements. This semi-ring is called the Grothendieck ring
of UCoreppAq or fusion ring of A. Fusion rules play an important role when
proving properties of quantum groups as described in Section 1.3. Banica
calculated the fusion rules of Ao, Au and As in [7, 8, 9]. Later Banica and
Vergnioux calculated the fusion rules of other free quantum groups, among
them the hyperoctahedral quantum group, in [25]. They could find a common
framework to explain the fusion rules of all examples known until then, which
they called free fusion rings. A free fusion ring roughly is a semi-ring R whose
basis is given by words with letters in some semigroup S such that the product
of elements in R can be expressed in terms of the multiplication in S. Based on
the work of Banica and Vergnioux, we clarify the definition of free fusion rings
in Chapter 2. We say that a quantum group has free fusion rules, if its fusion
ring is free. Banica and Vergnioux asked, whether all free quantum groups have
free fusion rules. This motivated the calculation of the fusion rules of further
examples of free quantum groups. In Chapter 2, we find a description of two of
the remaining orthogonal free quantum groups in terms of the free orthogonal
quantum groups and deduce that their fusion rules are not free. Note that the
seventh orthogonal free quantum group was not known at the time of our work
on Chapter 2, but Weber later found a description of the remaining one in the
same spirit as our work does [232].

In contrast to orthogonal free quantum groups, a complete classification of all
free quantum groups is out of sight. However, Banica gave a free complexification
construction in [12], which makes it possible to construct a canonical unitary
quantum group out of an orthogonal quantum group. If the initial quantum
group was free, so will be its free complexification. In particular, as expected,
the free complexification of the free orthogonal quantum group is the free
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unitary quantum group. We proved in Chapter 2, that if pA, uq is an orthogonal
quantum group with free fusion rules satisfying 1 R ub2k�1 for all k P N, then
also the fusion rules of its free complexification are free. This gives a new
example of a quantum group with free fusion rules. Note that the requirement
1 R ub2k�1 is necessary.

Proposition 1.4.1. Let pA, uq be an orthogonal compact matrix quantum group
for which there is k P N such that 1 P ub2k�1. Denote by p rA, ruq the free
complexification of A. Then rA contains a group-like unitary of order two. In
particular, the fusion rules of rA are not free.

Proof. Take k P N as in the statement of the proposition. Denote by
z P C�pZ{2Zq the non-trivial group-like unitary. Recall from [12] or Chapter 2
that the fundamental corepresentation ru of pA equals u � z in the universal free
product A � C�pZ{2Zq. Using Frobenius duality, the assumption 1 P ub2k�1

implies, u P prub ruqbk. So 1 P ub u implies z P prub ruqbk b ru. This shows that
z is in the C�-algebra rA, which is generated by the entries of ru.
1.4.2 A connection between easy quantum groups, varieties

of groups and reflection groups

We describe joint work with Moritz Weber presented in Chapter 6. Recall the
definition of free quantum groups as described in Section 1.4.1. A compact matrix
quantum group pA, uq is free if there is a *-homomorphism Aupnq Ñ AÑ Aspsq
that maps fundamental corepresentations onto fundamental corepresentations
and such that there is a combinatorial description of the category of finite
dimensional unitary corepresentations UCoreppAq of A. Banica and Speicher
realised in [24] that not the fact that a free quantum group contains Aspsq
is decisive, but that the combinatorial description of their corepresentation
categories plays the crucial role when considering free quantum groups.
They defined easy quantum groups as quotients of Aopnq such that there
is a combinatorial description of UCoreppAq in the following precise sense.
A partition is an arrangement of k upper and l lower points and lines connecting
them. Formally, a partition in this sense is a partition into subsets of
t1, � � � , ku \ t1, � � � , lu. A partition p can be represented by a diagram in
the following way:

� � � � . . . � �
p

� � � � . . . � �
k upper points and
l lower points.



DESCRIPTION OF OUR MAIN RESULTS 23

Two examples of such partitions are the following diagrams.

In the first example, all four points are connected, and the partition consists only
of one block. In the second example, the left upper point and the right lower
point are connected, whereas neither of the two remaining points is connected
to any other point. Denote by P pk, lq the set of all partitions on k upper and on
l lower points. Given a partition p P P pk, lq and two multi-indices pi1, . . . , ikq,
pj1, . . . , jlq, we can label the diagram of p with these numbers, both the upper
and the lower row labelled from left to right, and we put

δppi, jq �
#

1 if p connects only equal indices,
0 if there is a string of p connecting unequal indices .

For every n P N, there is a map Tp : pCnqbk Ñ pCnqbl associated with p, which
is given by

Tppei1 b � � � b eikq �
¸

1¤j1,...,jl¤n
δppi, jq � ej1 b � � � b ejl .

A compact matrix quantum group subgroup pA, uq of Aopnq is called easy
[24, 17], if there is a set of partitions C given by Dpk, lq � P pk, lq, for all k, l P N
such that

Hompubk, ublq � spantTp | p P Dpk, lqu .
We say in this case that the intertwiner spaces of pA, uq are spanned by partitions.
Banica and Speicher actually describe purely combinatorially the possible sets
of partitions C that arise in the definition of easy quantum groups (see Chapter
6). A set of partitions is called category of partitions if it describes the category
of finite dimensional unitary corepresentations of some easy quantum group.

Let us briefly mention that an easy quantum group is free in the previous sense,
if and only if its category of partitions contains only non-crossing partitions
in the sense of Speicher [145]. The classification of orthogonal free quantum
groups mentioned in Section 1.4.1 could be extended to particular classes of
easy quantum groups. Let [[[ be the partition on 4 lower points that are
all connected. We call an easy quantum group hyperoctahedral if its category
of partitions contains [[[. It was shown in [17, 232] that an easy quantum
group is either hyperoctahedral or it belongs to an explicitly known family
of 14 other easy quantum groups. Let

�pp be the partition on 3 upper and 3
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lower points that connects the first point in each row, with the last point of the
other row and connects the two middle points as well. An easy quantum group
whose category of partitions contains

�pp is called half-liberated. In [232], it was
shown that every half-liberated hyperoctahedral quantum group is contained
in a countable family of easy quantum groups defined by Banica, Curran and
Speicher in [17]. This family is called the hyperoctahedral series. So it remained
to describe non-half-liberated hyperoctahedral easy quantum groups.

In [17], also another countable family of hyperoctahedral quantum groups was
defined, which is called the higher hyperoctahedral series. The partition [{�[
consisting of a block with four elements and a block with two elements was the
common partition that is contained in all categories of partitions of elements
of the higher hyperoctahedral series. We say that an easy quantum group is
simplifiable, if it its category of partitions contains [{�[. Any simplifiable easy
quantum group is hyperoctahedral. In Chapter 6, we give a complete description
of all simplifiable easy quantum groups, show that there are uncountably many
and exploit our description in order to obtain structural results on the lattice of
simplifiable easy quantum groups. We describe the main result of this chapter
in what follows.

Recall that a reflection group is a countable discrete group G together with a
(possibly countably infinite) family of generators pgiqi of order two. Equivalently,
one can consider normal subgroups of the infinite free product Z�82 of the group
of order two. Denote by S0 the endomorphism subsemigroup of EndpZ�82 q
generated by all inner automorphisms and the following endomorphisms called
identification of letters. For all n P N and all choices of i1, . . . , in and j1, . . . , jn
of indices, the map

Z�82 Ñ Z�82 :
#
aik ÞÑ ajk for k � 1, . . . , n
ai ÞÑ ai if i R ti1, . . . , inu .

lies in S0. We call a reflection group G symmetric if its associated normal
subgroup H ¤ Z�82 is S0-invariant, that is φpHq � H for all φ P S0.

Theorem (See Section 6.6.1). There is a commuting diagram of lattice
isomorphisms and anti-isomorphisms
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simplifiable
categories of
partitions

�

%%KKKKKKKKK

�
//

simplifiable
easy quantum

groups
oo

�yyssssssss

symmetric
reflection
groups

99ssssssss
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in which all maps are explicitly described.

The explicit maps between the different lattices in the last theorem can be
found in Chapter 6. We want to point out that the correspondence between
simplifiable categories of partitions and simplifiable easy quantum groups can be
made more explicit than in the general framework of Banica and Speicher [24]
using Woronowicz’s Tannaka-Krein theorem [234]. Indeed the relation between
the two is rather involved, making use of the tensor C�-category associated
with a category of partitions. That is why we want to highlight the following
rephrasing of Proposition 6.5.5. If p is a partition with k blocks and a1, . . . , ak
are elements of an C�-algebra A, we denote by ppa1, . . . , akq the element of A
that is obtained by labelling the blocks of p with a1, . . . , ak clockwise starting
from the top left corner and multiplying the resulting word afterwards.
Proposition (See Proposition 6.5.5). The map between simplifiable categories
of partitions and simplifiable easy quantum groups can explicitly described. If C
is a simplifiable category of partitions, then

ACpnq � C�
�
uij , 1 ¤ i, j ¤ n |u � u unitary, u2

ij central and

ppa1, . . . , akq � a2
1 � � � a2

k for all

choices ar P tuij | i, j � 1, . . . , nu, 1 ¤ r ¤ k,

and all partitions p P C
	
.

is the associated simplifiable easy quantum group. If pA, uq is a simplifiable easy
quantum group, then its associated category of partitions is

CA � tp partition with k blocks | k P N and ppa1, . . . , akq � ppa2
1, . . . , a

2
kq

for all choices ar P tuij | i, j � 1, . . . , nu, 1 ¤ r ¤ ku .
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Applying our main theorem, we obtain the following result on the complexity
of easy quantum groups.

Theorem (See Theorem 6.B). There is an injection of lattices of varieties
of groups into the lattice of easy quantum groups. In particular, there are
uncountably many easy quantum groups that are pairwise non-isomorphic.

This result has two interpretations. On the one hand, it shows that the class of
easy quantum groups is very rich. On the other hand, it says that easy quantum
groups are too complex to study them all at the same time. This implies that
the strategy for research on easy quantum groups has to focus on particularly
interesting and accessible subclasses.

In Section 1.2, we explained that quantum isometry groups are non-classical
replacements of isometry groups in the context of operator algebras. Banica
and Skalski [22, 21] considered for the first time quantum isometry groups
C�-algebras. We give a description of the maps between easy quantum groups
and symmetric reflection groups in our main theorem in terms of such quantum
isometry group constructions. Denote by CpHr8s

n q the maximal simplifiable easy
quantum group - its category of partitions is generated by the element [{�[. Let
E ¤ Z�82 be the subgroup of all words of even length and for H ¤ Z�82 write
pHqn � Z�n2 .

Theorem (See Theorems 6.C). If H ¤ E ¤ Z�82 is a proper S0-invariant
subgroup of E, then the maximal quantum subgroup of CpHr8s

n q acting faithfully
by isometries on C�pZ�n2 {pHqnq is a simplifiable easy quantum group.

Vice versa, the diagonal subgroup of any simplifiable easy quantum group is of
the form Z�n2 {pHqn for some proper S0-invariant subgroup H ¤ E. Moreover,
these two operations are inverse to each other.

In particular, the last theorem gives a fairly large class of new examples of
non-classical quantum isometry groups.

1.4.3 Tensor C�-categories arising as bimodule categories of
II1 factors

This section explains our joint work with Sébastien Falguières presented in
Chapter 4. In Section 1.1.6, we explained the history of invariants for II1 factors.
Recall that a compact tensor C�-category is called finite if it has a finite number
of isomorphism classes of irreducible objects. Let us right away state two of the
consequences of our work presented in Chapter 4.
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Theorem (See Theorem 4.A). For every finite tensor C�-category C, there is
a II1 factor M such that BimodpMq � C as tensor C�-categories.

Theorem (See Corollary 4.4.4). For every second countable compact group G
there is a II1 factor M such that OutpMq � G and every finite index bimodule
of M is of the form αpMqL2pMqM for some α P AutpMq.

The first theorem complements the work of Vaes and Falguières on bimodule
categories of II1 factors [87], where it was shown that every symmetric compact
tensor C�-category is the bimodule category of a II1 factor. The second result
generalises the work of Falguières and Vaes on outer automorphism groups
of II1 factors [86], saying that every second countable compact group is the
outer automorphism of a II1 factor. In particular, it gives the first example of a
completely calculated, uncountable bimodule category of a II1 factor.

We show how to calculate Jones invariant

CpMq � tλ | there is a finite index irreducible inclusion N �M of index λu
for II1 factors with finite bimodule category. We calculate CpMq in a special case
where it contains irrational numbers. More concretely, we prove the following
theorem.

Theorem (See Theorem 4.B). There exists a II1 factor M such that

CpMq �
!

1, 5�?13
2 , 12� 3

?
13, 4�

?
13,

11� 3
?

13
2 ,

13� 3
?

13
2 ,

19� 5
?

13
2 ,

7�?13
2

)
.

All theorems in Chapter 4 are derived from a main result, which we are going to
explain in what follows. An inclusion of tracial von Neumann algebras N �M is
called quasi-regular if the N -N bimodule NL2pMqN is a direct sum of finite index
N -N -bimodules. Note that this is equivalent to the common definition given in
Chapter 4 by Section 1.4.2 in [164]. Recall that the basic construction of N �M
is the semifinite von Neumann algebra xM, eN y acting on L2pMq, where eN :
L2pMq Ñ L2pNq � L2pMq is the orthogonal projection. The inclusion N �M
has depth 2, if NL2pM1qM is isomorphic to a subbimodule of NL2pMq`8M.
Denote by BimodpM � M1q the tensor C�-category in BimodpMq that is
generated by ML2pM1qM. If N �M has depth 2, every irreducible bimodule in
BimodpM �M1q is isomorphic to a subbimodule of ML2pM1qM.

Theorem (See Theorem 4.D). let N � Q be a quasi-regular and depth 2
inclusion of II1 factors. Assume that N and N 1 XQ are hyperfinite and denote
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by N � Q � Q1 the basic construction. Then, there exist uncountably many
pairwise non-stably isomorphic II1 factors pMiq such that for all i we have
BimodpMiq � BimodpQ � Q1q as tensor C�-categories.

The proof of this result heavily relies on the deformation/rigidity results of Ioana,
Petersen and Popa [117]. As we explained in the introduction, the method of
Ioana, Peterson and Popa is intrinsically non-constructive, as it relies on a Baire
category argument. So we only show the existence of II1 factors with prescribed
bimodule category in the above theorem and don’t give a concrete example.
To finish this introduction, let us give a consequence of our main theorem
that we did not mention in this generality yet. For a locally compact group
G denote by URepfinpGq the compact tensor C�-category of finite dimensional
unitary representations of G. If A is a Kac algebra, we denote similarly by
UCorepfinpAq the category of finite dimensional unitary corepresentations of
A. In [198], the notion of maximally almost periodic discrete Kac algebras was
introduced. Roughly speaking, a Kac algebra A is maximally almost periodic,
if matrix coefficients of its finite dimensional unitary corepresentations span A
σ-weak densely.

Theorem (See Theorem 4.C). Let C denote one of the following compact
tensor C�-categories. Either C � URepfinpGq for a countable discrete group, or
C � UCorepfinpAq for an amenable or a maximally almost periodic discrete Kac
algebra A. Then, there is a II1 factor M such that BimodpMq � C.

This theorem gives a concrete motivation to study discrete Kac algebras and
their representation theory. Our work on free and on easy quantum groups in
the Chapters 2 and 6 is very much related to this. Let us explicitly mention the
question of whether the dual of the free orthogonal quantum group is maximally
almost periodic, which is described in Section 7.2.2.

1.4.4 Stable orbit equivalence of Bernoulli actions of free
groups and isomorphism of some of their factor actions

This Section describes our joint work with Niels Meesschaert and Stefaan
Vaes, which we present in Chapter 3. If Γ is a countable infinite discrete
group and pX0, µ0q is some standard probability measure space, the Bernoulli
action of Γ with base space pX0, µ0q is the natural shift action on the product
space pXΓ

0 , µ
bΓ
0 q. Extending earlier work of Ornstein on Bernoulli actions of

Z [149, 150], Ornstein and Weiss proved that entropy is a complete invariant
for isomorphism of Bernoulli actions of any discrete amenable group [152].
Moreover, they could show that certain factor actions of Bernoulli actions
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are isomorphic with a Bernoulli shift. This is interesting, since due to the
characterisation by entropy, Bernoulli shifts are comparably well understood.
As it was proved by Connes, Feldman and Weiss in [55], all free ergodic pmp
actions of amenable groups are pairwise orbit equivalent, which makes them
also indistinguishable on the level of their group measure space constructions.

In [39], Bowen introduced a generalisation of entropy for actions of amenable
groups and he showed that Bernoulli actions of a free group with different base
space entropy cannot be isomorphic. This made the question of whether such
Bernoulli actions can be orbit equivalent particularly interesting. In [40], Bowen
showed that indeed all non-trivial Bernoulli shifts of a fixed finite rank free
group are pairwise orbit equivalent. In [41], he showed that Bernoulli shifts
of free groups with different rank are stably orbit equivalent. Note that such
actions cannot be orbit equivalent due to the work of Gaboriau on L2-Betti
numbers and cost of measured equivalence relations [95, 96]. The proofs of
Bowen were graph theoretical in nature. We gave new proofs of Bowen’s results
using elementary algebraic methods only relying on the universal property
of the free groups and an abstract characterisation of Bernoulli shifts and of
co-induced actions. This gives the following theorem.

Theorem (Bowen [41, 40]. See Theorem 3.A). For fixed n and varying
non-trivial base probability space pX0, µ0q the Bernoulli actions Fn ñ XFn

0
are orbit equivalent.

If also n varies, the Bernoulli actions Fn ñ XFn
0 and Fm ñ Y Fm

0 are stably
orbit equivalent with compression constant pn� 1q{pm� 1q.

The abstract characterisation of Bernoulli shifts and co-induced actions actually
allows us to identify factor actions of finite free products of infinite amenable
groups Γ � Λ1 � � � � � Λn ñ KΓ{K for any compact second countable group K
as Bernoulli shifts.

Theorem (See Theorem 3.B). If Γ � Λ1 � � � � � Λn is the free product of n
infinite amenable groups and if K is a non-trivial second countable compact group
equipped with its normalized Haar measure, then the factor action Γ ñ KΓ{K
of the Bernoulli action Γ ñ KΓ by the diagonal translation action of K is
isomorphic with a Bernoulli action of Γ. In particular, keeping n fixed and
varying the Λi and K, all the actions Γ ñ KΓ{K are orbit equivalent.

In the particular case where Γ � Fn, the action Γ ñ KΓ{K is isomorphic with
the Bernoulli action Γ ñ pK � � � � �KqΓ whose base space is an n-fold direct
product of copies of K.

This extends results of Ornstein and Weiss [152]. It was speculated before
whether the actions Γ ñ KΓ{K for fixed non-amenable Γ and for K running



30 HISTORICAL INTRODUCTION AND DESCRIPTION OF THE MAIN RESULTS

through compact groups, gives rise to explicit examples of pairwise non-orbit
equivalent actions. Out results show that this is not the case.

The above results, from a von Neumann algebraic perspective, give a complete
classification of an interesting and natural class of group measure space
constructions L8pKFn{Kq � Fn and L8pXFn

0 q � Fn, saying that any of these
factors are stably isomorphic with scaling factor pm � 1q{pn � 1q if the free
groups acting have m and n generators, respectively. The classification involves
unexpected isomorphism results for von Neumann algebras, as they were
explained in Section 1.1.5.

1.4.5 On the classification of free Bogoliubov crossed product
von Neumann algebras by the integers

We describe our work presented in Chapter 5. There are different ways
to associate an action G ñ M on a tracial von Neumann algebra with an
orthogonal representation of a discrete group G. Namely, there are Gaussian
actions, Bogoliubov actions and free Bogoliubov actions on the diffuse abelian
von Neumann algebra, the hyperfinite II1 factor and on free group factors,
respectively. They have in common that the original representation of G is
closely related to the representation of G on the associated L2-space of the
von Neumann algebras. It is, however, not clear how the crossed product von
Neumann algebra M � G is related to G ñ M . For Gaussian actions, the
focus was put on rigidity results involving only groups that have a certain
rigidity property themselves (that is property (T) groups and non-amenable
products of infinite groups) [38] and for Bogoliubov actions research focused
on entropy results for abelian groups [201, 30, 101]. In contrast, for free
Bogoliubov actions the assumptions on G are of a more general nature and the
questions one asks become different. Let us denote a free Bogoliubov action
associated with an orthogonal representation pH,πq of G by Gñ ΓpHq2 and
the free Bogoliubov crossed product by ΓpH,G, πq2. On the one hand, Houdayer
and Shlyakhtenko [112] and Houdayer [106] proved strong structural results
about free Bogoliubov crossed product of any countable group, making only
assumptions on the representation they are constructed from. On the other
hand, Houdayer could prove maximal amenability of LG � ΓpHq2 � G for
any weakly mixing representation of an infinite abelian discrete group G. In
particular, also abelian groups give rise to interesting free Bogoliubov crossed
products, in contrast to the case of Gaussian actions and Bogoliubov actions.
The simplest group is supposedly the group of integers, which motivates to
study it in a deeper way.

The work in Chapter 5 studies free Bogoliubov crossed products with Z and
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aims at a classification and a characterisation of structural properties of these
von Neumann algebras in terms of properties of the representation they are
constructed from. Concerning the classification of free Bogoliubov crossed
products with Z, we can divide our results into three types. Firstly, we obtain
a complete classification of free Bogoliubov crossed products associated with
periodic orthogonal representations of Z. Notably, the classification of such
crossed products is equivalent to the free group factor isomorphism problem.

Theorem (See Theorem 5.A). Let pπ,Hq be a non-faithful orthogonal
representation of Z of dimension at least 2. Let r � 1� pdim π � 1q{rZ : kerπs.
Then

ΓpH,Z, πq2 � L8pr0, 1sqbLFr ,

by an isomorphism carrying the subalgebra LZ of ΓpH,Z, πq2 onto the subalgebra
L8pr0, 1sq b CrZ:kerπs of L8pr0, 1sqbLFr

The second type of classification result that we obtain are flexibility results,
mainly focusing on almost periodic representations of Z. Let us first note the
following theorem.

Theorem (See Theorem 5.B). The isomorphism class of the free Bogoljubov
crossed product associated with an orthogonal representation π of Z with almost
periodic part πap depends at most on the weakly mixing part of π, the dimension
of πap and the concrete embedding into S1 of the group generated by the
eigenvalues of the complexification of πap.

Shlyakhtenko asked during the conference on von Neumann algebras and ergodic
theory in IHP, Paris, 2011, whether two free Bogoliubov crossed products
associated with almost periodic orthogonal representations of the integers are
isomorphic if and only if the concrete subgroup of S1 generated by the eigenvalues
of the complexifications of the representations they are constructed from are
the same. We could answer this question in the negative.

Theorem (See Theorem 5.D). All faithful two dimensional representations of
Z give rise to isomorphic free Bogoljubov crossed products.

It remains open to find a complete classification of free Bogoliubov crossed
products associated with almost periodic orthogonal representation of the
integers. As we point out, our work allows to single out a conjecture on how a
complete classification should look like.

Conjecture (See Conjecture 5.A). The abstract isomorphism class of the
subgroup generated by the eigenvalues of the complexification of an infinite
dimensional, faithful, almost periodic orthogonal representation of Z is a
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complete invariant for isomorphism of the associated free Bogoljubov crossed
product.

In order to show that unexpected isomorphisms for free Bogoliubov crossed
products exist, we prove the following theorem.

Theorem (See Theorem 5.C). If λ denotes the left regular orthogonal
representation of Z and 1 denotes its trivial representation, then

Γp 2̀pZq ` C,Z, λ` 1q2 � Γp 2̀pZq,Z, λq2 � Γp 2̀pZq ` C2,Z, λ` 2 � 1q2 .

The third type of classification result we obtain are rigidity results for
representations containing a two-dimensional invariant subspace. We are able
to recover spectral information of the involved representations. This leads to a
number of non-isomorphism results for free Bogoliubov crossed products, which
are summarised in the following theorem.

Theorem (See Theorem 5.G). No free Bogoliubov crossed product associated
with a representation in the following classes is isomorphic to a free Bogoliubov
crossed product associated with a representation in the other classes.

• The class of representations λ`π, where λ is the left regular representation
of Z and π is a faithful almost periodic representation of dimension at
least 2.

• The class of representations λ`π, where λ is the left regular representation
of Z and π is a non-faithful almost periodic representation of dimension
at least 2.

• The class of representations ρ` π, where ρ is a representation of Z whose
spectral measure µ and all of its convolutions µ�n are non-atomic and
singular with respect to the Lebesgue measure on S1 and π is a faithful
almost periodic representation of dimension at least 2.

• The class of representations ρ` π, where ρ is a representation of Z whose
spectral measure µ and all of its convolutions µ�n are non-atomic and
singular with respect to the Lebesgue measure and π is a non-faithful
almost periodic representation of dimension at least 2.

• Faithful almost periodic representations of dimension at least 2.

• Non-faithful almost periodic representations of dimension at least 2.

• The class of representations ρ` π, where ρ is mixing and dim π ¤ 1.
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We also try to characterise strong rigidity of free Bogoliubov crossed products
in terms of properties of the representation from which they are constructed.
In [112] Houdayer and Shlyakhtenko already proved that any free Bogoliubov
crossed product associated with a mixing representation of any discrete group is
strongly solid. We are able to amend this result in the case of Z-representations
in two directions. Our first result on strong solidity is described in the following
theorem.

Theorem (See Theorem 5.E). Let pπ,Hq be the direct sum of a mixing
representation and a representation of dimension at most one. Then ΓpH,Z, πq2
is strongly solid.

If pπ,Hq is a representation of a discrete group G, we say that a subspace
K ¤ H is rigid for G if there is a sequence gn Ñ8 in G, as nÑ8, such that
πpgnq|K Ñ idK strongly as nÑ8. We make the following observation based
on a result by Popa published in [153]. It gives a counterpart to our previous
theorem.

Theorem (See Theorem 5.5.4). Let π be an orthogonal representation of Z
with a rigid subspace of dimension at least two. Then Mπ is not solid.

We conjecture that the previous observation describes the only obstruction to
strong solidity.

Conjecture (See Conjecture 5.B). If pπ,Hq is an orthogonal representation of
Z, then the following are equivalent.

• ΓpH,Z, πq2 is solid.

• ΓpH,Z, πq2 is strongly solid.

• π has no rigid subspace of dimension two.

The results of this work, together with our results presented in Chapter 3, give
(partial) classification results for natural classes of von Neumann algebras that
are constructed from classical data. It would be interesting to find other natural
classes of von Neumann algebras for which one can obtain classification results
involving isomorphism and non-isomorphism results at the same time.
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Chapter 2

Isomorphisms and fusion rules
of orthogonal free quantum
groups and their free
complexifications

This chapter is based on [182]. We show that all orthogonal free quantum
groups are isomorphic to variants of the free orthogonal Wang algebra, the
hyperoctahedral quantum group or the quantum permutation group. We also
obtain a description of their free complexification. In particular we complete
the calculation of fusion rules of all orthogonal free quantum groups and their
free complexifications.

2.1 Introduction

One problem in the theory of compact quantum groups is to find examples
whose invariants can be calculated. The fusion rules of a compact quantum
group are one of these invariants. Fusion rules give a complete description of
equivalence classes of irreducible corepresentations and a decomposition of the
tensor product of two of them into irreducible corepresentations. One approach
to this problem is given by ’free quantum groups’ as defined in [24]. These are
orthogonal quantum groups, i.e. subgroups of the free orthogonal Wang algebra,

35
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whose intertwiners can be described by non-crossing partitions.
Given natural numbers k and l the set Partpk, lq denotes the set of all partitions
on two rows with k and l points, respectively. That is, an element P P Partpk, lq
is a partition of the disjoint union t1, ..., ku \ t1, ..., lu. Alternatively it can be
described by a diagram #� � ... �

P

� � ... �

+
connecting the k points in the upper row and the l points in the lower row
according to the partition of t1, ..., ku\t1, ..., lu. P is called non-crossing if it can
be represented by a diagram with no lines crossing. The set of all non-crossing
partitions on k and l points is denoted by NCpk, lq.
Let n, k, l P N and let peiq be the standard basis of Cn. Let i � pi1, ..., ikq P
t1, ..., nuk and j � pj1, ..., jlq P t1, ..., nul be multi indices and P P Partpk, lq.
We set P pi, jq � 1 if and only if the diagram P joins only equal numbers after
writing the entries of i in the upper row of the above diagram and those of j in
the lower row. If P connects different numbers set P pi, jq � 0.
Using this notation, a partition P P Partpk, lq defines a linear map TP from
pCnqbk to pCnqbl by

TP pei1 b ...b eikq �
¸

j1,...,jl

P pi1, ..., ik; j1, ..., jlq � ej1 b ...b ejl .

A subspace of HomppCnqbk, pCnqblq is by definition spanned by partitions if it
is linearly generated by a family pTP q where P runs through some subset of
Partpk, lq.
In [230] the free unitary Wang algebra

Aupnq :� C�puij , 1 ¤ i, j ¤ n|puijqij , pu�ijqij are unitaryq

and the free orthogonal Wang algebra

Aopnq :� C�puij , 1 ¤ i, j ¤ n|puijqij � pu�ijqij is unitaryq

were introduced. Moreover in [231] the quantum permutation group

Aspnq :� C�
��uij , 1 ¤ i, j ¤ n

������
puijq � pu�ijq is unitary and uij are
partial isometries summing up to one
in every row and every column

�

was defined. Note that “are partial isometries” can be replaced by “are
projections”. The three last named algebras are compact matrix quantum
groups in the sense of Woronowicz [235].
The following class of quantum groups will be of interest in this chapter.
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Definition 2.1.1. Let pA,Uq be a compact matrix quantum group. Then it is
called free if

• The morphism pAupnq, Uuq Ñ pAspnq, Usq mapping the entries of Uu to
those of Us factorizes through pA,Uq.

• The intertwiner spaces HompU i1b� � �bU ik , U j1b� � �bU jlq, iα, jβ P t1, u
are spanned by partitions, where U � pu�ijq is the conjugate corepresenta-
tion of U and b denotes the tensor product of corepresentations.

If the first condition is strengthened by requiring that the morphism
pAopnq, Uoq Ñ pAspnq, Usq factors through pA,Uq, then A it is called orthogonal
free.

In [24] the following classification was achieved.

Theorem 2.1.2. There are exactly six orthogonal free quantum groups. Namely

1. The free orthogonal Wang algebra.

2. The quantum permutation group.

3. The hyperoctahedral quantum group

Ahpnq :� C�
�
uij , 1 ¤ i, j ¤ n

���� puijq � pu�ijq is unitary and
uij are partial isometries



.

4. The bistochastic quantum group

Abpnq :� C�
��uij , 1 ¤ i, j ¤ n

������
puijq � pu�ijq is unitary and
uij sum up to one
in every row and every column

�
.
5. The symmetrized bistochastic quantum group

Ab’pnq :� C�
��uij , 1 ¤ i, j ¤ n

������
puijq � pu�ijq is unitary and
uij sum up to the same element
in every row and every column

�
.
6. The symmetrized quantum permutation group

As’pnq :� C�

����uij , 1 ¤ i, j ¤ n

��������
puijq � pu�ijq is unitary and
uij are partial isometries
summing up to the same element
in every row and every column

���
.
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The fusion rules of (1) were calculated in [7], those of (2) in [9] and those of (3)
in [25]. We show that the remaining examples are slight modifications of Aopnq
and Aspnq. In particular we can derive their fusion rules and find that Ab’pnq
and As’pnq are counterexamples to a conjecture by Banica and Vergnioux given
in [25].
In [12] the free complexification of orthogonal free quantum groups was
considered. If pA,Uq is a orthogonal free quantum group, then its free
complexification p rA, rUq is by definition the sub-C*-algebra of the free product
A � CpS1q generated by the entries of rU :� U � idS1 � puij � idS1q. Here
idS1 denotes the canonical generator of CpS1q. As Banica shows in [12] the
intertwiners between tensor products of the fundamental corepresentation and
its conjugate can be described by the intertwiners of the orthogonal free quantum
group it comes from. With additional requirements we can calculate the fusion
rules of the free complexification from the fusion rules of the original orthogonal
free quantum group. These additional requirements are fulfilled by Aopnq and
Ahpnq, which gives the fusion rules of Akpnq � �Ahpnq. Those of Aupnq � �Aopnq
are known from [8].
From [12] we know that �Abpnq � �Ab’pnq and �Aspnq � �As’pnq. We denote�Abpnq �: Acpnq and �Aspnq �: Appnq. They can be decomposed and described
in terms of Aopnq and Aspnq again.

2.2 Preliminaries

We will mainly work with compact matrix quantum groups as defined by
Worono-wicz in [235]. If A is a *-algebra and U P MnpAq we denote by U the
matrix whose entries are conjugated, i.e. U ij � pUijq�.
A pair pA,Uq of a C*-algebra A and a unitary U P MnpAq is called a compact
matrix quantum group if

• A is generated by the entries of U ,

• there is a *-homomorphism ∆ : AÑ AbminA mapping uij to
°
k uikbukj ,

• the matrix U is invertible.

A morphism of compact matrix quantum groups pA,Uq φÑ pB, V q is a
*-homo-morphism AÑ B such that φpuijq � vij where U and V must have the
same size. There is at most one morphism from one quantum group to another.
If there is a morphism pA,Uq Ñ pB, V q then we say that pB, V q is a quantum
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subgroup of pA,Uq.
Every compact matrix quantum group is also a compact quantum group, i.e. a
C*-algebra A with a *-homomorphism ∆ : AÑ Abmin A such that

• p∆b idq �∆ � pidb∆q �∆,

• spanpAb 1q∆pAq � spanp1bAq∆pAq � AbA.

A morphism of compact quantum groups pA,∆Aq φÑ pB,∆Bq is a unital
*-homomorphism from A to B such that ∆B �φ � pφbφq�∆A. Every morphism
of compact matrix quantum groups is also a morphism of compact quantum
groups. We will also refer to a quantum group pA,Uq or pA,∆q as A. If pA,∆Aq
and pB,∆Bq are quantum groups, then we denote by pA,∆Aq b pB,∆Bq the
direct sum of quantum groups and by pA,∆Aq � pB,∆Bq their free product. We
will also write AbB and A �B. A unitary corepresentation matrix of pA,∆q
is a unitary matrix V P MmpAq such that ∆pvijq �

°
k vik b vkj . In particular

a one dimensional corepresentation matrix is just a unitary group-like element
of A.

2.3 Free fusion rings

In this section we will introduce free fusion rings and prove that they are free
unital rings.

We will use the following notation for words in free monoids. Let M � monpSq
be a free monoid over a set S. If w PM is a word of length k, then we write wi
for the i-th letter of w, 1 ¤ i ¤ k. Hence w � w1w2w3 . . . wk�1wk.

Definition 2.3.1. A free fusion monoid is a free monoid M � monpSq over a
set S with a fusion � : S � S Ñ S Y tHu and a conjugation : S ÝÑ S. They
must satisfy the following conditions.

1. The fusion � is associative, where we make the convention that s � s1 is the
empty set if one of s, s1 is the empty set.

2. The conjugation is involutive, i.e. s � s for all s P S.
3. Fusion and conjugation are compatible in the following sense. For all
s1, s2, s3 P S we have

s1 � s2 � s3 ô s2 � s3 � s1
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A set S equipped with fusion and conjugation is called a fusion set.
The fusion and conjugation of S induce a fusion and a conjugation on M via

• w � w1 � w1 . . . wk�1pwk � w11qw12 . . . w1l where this fusion is the empty set
by convention if wk � w11 � H.

• w � wk . . . w1

If M � monpSq is a free fusion monoid, we can turn ZM into an associative
ring by

aw � aw1 �
¸
w�xy
w1�yz

paxz � ax�zq.

Here w, w1 are words in M , aw and aw1 are the corresponding elements in
ZM , xy, yz and xz denote the concatenation of words and the second term in
the sum is by convention always ignored if the fusion x � z is empty. Actually
condition (3) of the previous definition is a necessary condition for making ZM
associative, as it can be seen by considering pas1 � as2q � as3 � as1 � pas2 � as3q for
s1, s2, s3 P S. A *-ring isomorphic to ZM for some fusion monoid M is called a
free fusion ring.
From the point of view of rings, free fusion rings are very easy. Actually they
are free. The proof of the following lemma was already given in [25] in some
special cases.

Lemma 2.3.2. A free fusion ring over a fusion set S is the free unital ring
over as, s P S.

Proof. Let ZM be the fusion ring over a fusion set S. It suffices to show that
ZM is a free Z-module with the basis as1 � � � ask with k P N and s1, . . . , sk P S.
So it suffices to express the elements of the Z-basis aw, w P M as Z-linear
combinations of the elements as1 � � � ask with k P N and s1, . . . , sk P S and to
show that tas1 � � � ask |k P N, s1, . . . , sk P Su is Z-linearly independent.
There are coefficients Cws1...sk P Z such that as1 � � � ask � as1...sk �°
|w| k C

w
s1...sk

aw, where |w| is the length of the word w P M . This shows
that tas1 � � � ask |k P N, s1, . . . , sk P Su is linearly independent. Moreover,
by induction on k there are coefficients Dw

s1...sl
P Z such that as1...sk �

as1 � � � ask �
°
|w| kD

w
s1...sk

aw1 � � � aw|w| . This shows that all aw, w P M are
linear combinations of as1 � � � ask with k P N and s1, . . . , sk P S.
Remark 2.3.3. Free fusion rings can be used to describe fusion rules very
shortly and there is hope to use free fusion rings as a starting point for proofs of
several properties of quantum groups. See Section 10 of [25] for a comment on
these possibilities. However in order to justify the concept of free fusion rings
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intrinsically it would be good to answer the following question affirmatively. Is
every fusion ring of a compact quantum group that is free as a unital ring a
free fusion ring?

2.4 Some isomorphisms of combinatorial quantum
groups

In this section we will consider combinatorial quantum groups A�pnq for � P
tb, b1, s1, c, pu. They are free products or direct sums of known quantum groups.
For � P tb1, s1, c, pu it turns out that their fusion rings are not free.

Theorem 2.4.1. We have the following isomorphisms of compact quantum
groups (not necessarily preserving the fundamental corepresentation).

1. Abpnq is isomorphic to Aopn� 1q.
2. As’pnq is isomorphic to the direct sum Aspnq b C�pZ{2Zq.
3. Ab’pnq is isomorphic to the free product Abpnq � C�pZ{2Zq.
4. Appnq is isomorphic to the free product Aspnq � CpS1q.
5. Acpnq is isomorphic to the free product Abpnq � CpS1q.

Remark 2.4.2. Note that in the case n ¤ 3 we have the isomorphisms
Aspnq � CpSnq and Aop1q � Cpt�1, 1uq. So the given descriptions can be
further simplified.

Theorem 2.4.1(1) is proven by the following remark. Let U P MnpAq be an
orthogonal matrix, i.e. U � U unitary, where A is any unital C�-algebra. Then
U is bistochastic if and only if the vector p1, 1, . . . , 1qt is a right eigenvector and
p1, 1, . . . , 1q is a left eigenvector of U . If T P MnpCq denotes any orthogonal
matrix such that T p1, 0, . . . , 0qt � p1{?n, . . . , 1{?nqt , then an orthogonal
matrix U is bistochastic if and only if T tUT is of block form with 1 in the upper
left corner and an orthogonal pn� 1q � pn� 1q matrix in the lower right corner.
The key observation for the rest of 2.4.1 is the following lemma.

Lemma 2.4.3. Let � P tb1, s1, c, pu. The fundamental corepresentation of
A�pnq contains a one dimensional non-trivial corepresentation Uz which fulfils
Uz b Uz � 1. If � P tb1, s1u then Uz � Uz.

Proof. Consider � � b1, s1 first. The element z � °
i uij is easily seen to be

a unitary group-like element, so it corresponds to a one dimensional unitary
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corepresentation of A�pnq. Consider the group Sn`Z{2Z � Un as permutation
matrices with entries �1 and �1. Let USn`Z{2Z be the canonical fundamental
corepresentation of CpSn ` Z{2Zq. Then the image of z under the map
pA�pnq, U�q Ñ pCpSn ` Z{2Zq, USn`Z{2Zq is �1, so z is non-trivial.
For � � p, c consider z :� idS1 as coming from the copy of CpS1q. This copy
is contained in A�pnq, since the trivial corepresentation is contained in the
fundamental corepresentation of Abpnq and Aspnq.
Using the relations of A�pnq we can check the rest of the claim by simple
calculations.

Remark 2.4.4. The last lemma shows, that the fusion rules of neither of the
quantum groups A�pnq for P tb1, s1, c, pu can be described by a free fusion ring.
Actually in a free fusion ring any element a � 1 satisfies a � a� � 1. This gives
two counterexamples to the conjecture that for n ¥ 4 the fusion rules of all
orthogonal free quantum groups can be described by a free fusion ring, which
was stated in [25].

Remark 2.4.5. The fundamental corepresentation of any matrix quantum
group that has pAspnq, Usq as a sub quantum group cannot be the sum of more
than two irreducible corepresentations. In particular the last lemma already
gives a decomposition U � Uz ` V with Uz non-trivial and one dimensional
and V irreducible, where U is the fundamental corepresentation of A�pnq.

Proof of Theorem 2.4.1. The isomorphism of (2) is given by AspnqbC�pZ{2Zq Ñ
As’pnq : us

ij b 1 ÞÑ us1
ij � z, 1 b u1 ÞÑ z. This map exists since z is central in

As’pnq as an easy calculation shows. The inverse map is given by

As’pnq Ñ Aspnq b C�pZ{2Zq : us’
ij Ñ us

ij b u1.

In order to prove (3) we use again an orthogonal matrix T P MnpCq such
that T p1, 0, ..., 0qt � p1{?n, ..., 1{?nqt. Then a matrix U P MnpAq for some
C�-algebra A satisfies the relations of Ub’ if and only if T tUT is a block
matrix with a self-adjoint unitary in the upper left corner and an orthogonal
pn � 1q � pn � 1q matrix in the lower right corner. This proves Ab’pnq �
Aopn� 1q � C�pZ{2Zq � Abpnq � C�pZ{2Zq.
The isomorphism of (4) is given by

Aspnq � CpS1q Ñ Appnq : us
ij ÞÑ up

ij � z�, idS1 ÞÑ z.

The isomorphism of (5) is given by

Abpnq � CpS1q Ñ Acpnq : ub
ij ÞÑ uc

ij � z�, idS1 ÞÑ z.

All the isomorphisms respect the comultiplication, since z is group-like. Hence,
they are isomorphisms of quantum groups.
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2.5 Fusion rules for free products and the quantum
group Akpnq

In this section we describe the fusion rules of the free complexification Akpnq ��Ahpnq. Instead of referring to Akpnq explicitly, we will work in a more general
setting and deduce its fusion rules as a corollary. Roughly the main statement
of this section is given by the following theorem. See theorem 2.5.5 for a precise
statement.

Theorem 2.5.1. Let pA,Uq be an orthogonal compact matrix quantum group,
i.e. U � U , such that its fusion rules are free. Assume further that 1 R Ub2k�1

for any k P N. Then the fusion rules of p rA, rUq are free and can be described in
terms of the fusion rules of pA,Uq.

The following theorem is due to Wang [231].

Theorem 2.5.2. Let pA,∆Aq and pB,∆Bq be compact quantum groups.
Let pUαqαPA and pUβqβPB be complete sets of representatives of irreducible
corepresentations of A and B, respectively. Then the corepresentations
pW γ1 b � � � bW γnq with n P N, all W γi in tUα |α P A u and tUβ |β P Bu
and neighbours not from the same set, form a complete set of irreducible
representations of the free product pA,∆Aq � pB,∆Bq.

The following observation will be useful when studying the fusion rules of a free
complexification.

Remark 2.5.3. Let A �B be a free product of compact quantum groups with
irreducible corepresentations W γ1 b � � �bW γn and W δ1 b � � �bW δm as in the
last theorem. Then

1. If W γn and W δ1 are not corepresentations of the same factor of the free
product, then W γ1 b � � � b W γn b W δ1 b � � � b W δm is an irreducible
corepresentation of A �B.

2. IfW γn andW δ1 are corepresentations of the same factor andW γn bW δ1 �°k
i�1W

εi � δWγn ,W δ1 � 1 is the decomposition into irreducible corepresen-
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tations, then

W γ1 b � � �bW γn bW δ1 b � � �bW δm

�
ķ

i�1
pW γ1 b � � �bW γn�1 bW εi bW δ2 b � � �bW δmq

� δWγn ,W δ1 �W γ1 b � � �bW γn�1 bW δ2 b � � �bW δm

and the first k summands of this decomposition are irreducible.

For the rest of this section fix an orthogonal compact matrix quantum group
pA,Uq such that its fusion rules are described by a free fusion ring over the
fusion set S. Assume further that 1 R Ub2k�1 for any k P N.
Note that the fusion ring of rA is the fusion subring of ReppA � CpS1qq that is
generated by U b z, where z denotes the identity on the circle.
We will construct the free complexification rS of S and prove that the fusion
rules of p rA, rUq are described by rS. We begin by constructing rS.
Let Repirr

even (respectively Repirr
odd) be the set of classes of irreducible

corepresentations of A that appear as subrepresentations of an even (respectively
odd) tensor power of U . We have Repirr

even X Repirr
odd � H due to Frobenius

duality and the requirement 1 R U2k�1 for all k P N. Let Seven � S (resp.
Sodd � S) be the set of elements corresponding to corepresentations from
Repirr

even (resp. Repirr
odd). The set rS is then by definition the disjoint union

Seven\Seven\Sodd\Sodd. Denote the first copy of Seven (resp. Sodd) by Sp1qeven

(resp. Sp1qodd) and the second one by Sp2qeven (resp. Sp2qodd).

What follows is motivated by the following point of view:

Remark 2.5.4. We consider element of Sp1qeven as a plain copy of those in Seven.
The elements of Sp2qeven are of the form z� � s � z for some s P Seven. Similarly we
consider elements of Sp1qodd as s � z and elements of Sp2qodd as z� � s for s P Sodd.

Define a conjugation on rS by the conjugation on S leaving Sp1qeven and S
p2q
even

globally invariant and exchanging Sp1qodd and Sp2qodd. Note that Seven � Seven and
Sodd � Sodd, i.e. the conjugation on rS is well defined. A fusion on rS can be
defined according to the following table.
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� S
p1q
even S

p2q
even S

p1q
odd S

p2q
odd

S
p1q
even S

p1q
even Y tHu H S

p1q
odd Y tHu H

S
p2q
even H S

p2q
even Y tHu H S

p2q
odd Y tHu

S
p1q
odd H S

p2q
odd Y tHu H S

p1q
even Y tHu

S
p2q
odd S

p2q
odd Y tHu H S

p2q
even Y tHu H

The row gives the element which is fused from the right with an element coming
from the set indicated by the column. The fusion is empty if this is indicated
by the table and is otherwise the usual fusion of two elements of S lying in the
part of rS indicated by the table. Note that this definition makes sense, since
Seven �Seven, Sodd �Sodd � SevenYtHu and Seven �Sodd, Sodd �Seven � SoddYtHu.
It is easy to see that rS with this structure is a fusion set.
Now we can state a precise version of 2.5.1.

Theorem 2.5.5. Let pA,Uq be an orthogonal compact matrix quantum group
such that its fusion rules are described by a free fusion ring over the fusion set
S. Assume further that 1 R Ub2k�1 for any k P N. Then the fusion rules of
p rA, rUq are given by the free complexification rS of S.

We construct a complete set of corepresentations of rA. In order to do so we
associate an irreducible corepresentations of p rA, rUq to any element of rR :�
Repirr

even \ Repirr
even \ Repirr

odd \ Repirr
odd. We denote the i-th copy of Repirr

even
(Repirr

odd) by Repirr,piq
even (Repirr,piq

odd ). Let V be a irreducible corepresentation in
Repirr

even. Then V and z� � V � z are corepresentations of rA. Actually, if V is an
irreducible subrepresentation of Ub2k then V is an irreducible subrepresentation
of prU b rUqbk and z� � V � z is an irreducible subrepresentation of prU b rUqbk.
We consider V as an element of Repirr,p1q

even and z� � V � z as an element of
Repirr,p2q

even . Similarly we see that if V P Repirr
odd then we can associate with it

corepresentations V � z P Repirr,p1q
odd and z� � V P Repirr,p2q

odd . Note that elements
s from rS give corepresentations rUs by this identification. Consider a word
w � w1 . . . wk with letters in rR. We say that w is reduced if in the sequencerUw1 , . . . ,

rUwn a z is never followed by z� and Ux is always followed by z or z�.
In formal terms:

@1 ¤ i ¤ k � 1 : pwi P Repirr,p1q
even Y Repirr,p2q

odd ñ wi�1 P Repirr,p2q
even Y Repirr,p2q

odd q^

pwi P Repirr,p2q
even Y Repirr,p1q

odd ñ wi�1 P Repirr,p1q
even Y Repirr,p1q

odd q
Any such reduced word w � w1 . . . wk gives rise to an irreducible corepresen-
tation of rA by rUw :� rUw1 b . . .b

rUwk and different reduced words give rise to
inequivalent corepresentations by 2.5.2. Since any iterated tensor product of
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rU and rU decomposes as a sum of irreducible corepresentations of the type rUw,
where w is a reduced word with letters in rR, any irreducible corepresentation
of rA is equivalent to some rUw.
Definition 2.5.6. Consider now a word w � w1 . . . wk with letters in rS. It is
called connected if every z is followed by a z�. Formally:

@1 ¤ i ¤ k � 1 : pwi P Sp1qeven Y S
p2q
odd ñ wi�1 P Sp1qeven Y S

p1q
oddq^

pwi P Sp2qeven Y S
p1q
odd ñ wi�1 P Sp2qeven Y S

p2q
oddq

The following definition says how we can associate irreducible corepresentations
of rA to words with letters in rS.
Definition 2.5.7. If w is an arbitrary word with letters in rS then it has a
unique decomposition w � x1 . . . xl into maximal connected words. This gives
rise to a unique reduced word w1 with letters in rR. We set rUw :� rUw1
Next we have to do some preparations in order to prove Theorem 2.5.5.

Definition 2.5.8. Let x � x1 . . . xm be a word in rS. Then x̌i is the letter in
S corresponding to xi and x̌ :� x̌1x̌2 . . . x̌m.

Remark 2.5.9. Note that if x is a connected word with letters in S then
according to remark 2.5.4 it can be written as zi0 � x̌ � zi1 , i0, i1 P t0, 1,�1u and
we have rUx � zi0 b Ux̌ b z

i1 .

Definition 2.5.10. Let x, y be connected words with letters in rS. We say that
px, yq fits together if xy is a connected word.

Lemma 2.5.11. Let x � x1 . . . xm and y � y1 . . . yn be connected words with
letters in rS such that pxm, y1q fits together. Write rUx � zi0 b Ux̌ b zi1 andrUy � zj0 b Uy̌ b z

j1 . Then

rUx b rUy � zi0 b

� ¸
x�ac,y�cb

Uǎb̌ ` Uǎ�b̌

�
b zj1 �

¸
x�ac,y�cb

rUab ` rUa�b.
Proof. Since px, yq fits together, we have zi1 b zj0 � 1. So by Remark 2.5.3 the
first equation follows. We have to prove that for all x � ac, y � cb

1. zi0 b Uǎb̌ b zj1 � rUab
2. zi0 b Uǎ�b̌ b zj1 � rUa�b.
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In order to prove (1), note that ab is connected, since a, b are connected and
pa, bq fits together. So (1) follows from the way irreducible corepresentations
are associated to connected words remarked in 2.5.9.
For (2) note that, since pa, bq fits together, ǎ � b̌ � H if and only if a � b � H. If
a � b � H then it is connected and (2) follows by remark 2.5.9 again.

Now we can give the proof of Theorem 2.5.5

Proof of Theorem 2.5.5. Let x � x1 . . . xk and y � y1 . . . yl be words with
letters in rS. We have to show that

rUx b rUy � ¸
x�ac,y�cb

rUab ` rUa�b
Let x � u1 . . . um and y � v1 . . . vn be the decomposition in maximal connected
words. We identify them with letters in rR. Then
rUx � zi0 b Uǔ1 b z

i1 b Uǔ2 b z
i2 b � � �b U ˇum�1 b z

im�1 b zim b Uǔm b z
im�1looooooooooomooooooooooon

� rUum

,

rUy � zj0 b Uv̌1 b z
j1loooooooomoooooooon

� rUv1

bzj2 b Uv̌2 b � � �b zjn�1 b U ˇvn�1 b z
jn b Uv̌n b z

jn�1

with i1, ..., im�2, j3, ..., jn P t1, �u, i0, im, j0, j2 P t0, �u and im�1, im�1, j1, jn�1 P
t0, 1u.
We are going to consider the two cases pxk, y1q do or do not fit together.
Assume that pxk, y1q do not fit together. This means zim�1 � zj0 � 1. ThenrUx b rUy is irreducible by Theorem 2.5.2. Moreover, xy � u1 . . . umv1 . . . vn is
a decomposition in maximal connected words. So rUx b rUy � rUxy. On the
other hand pxk, y1q not fitting together implies xk � y1 and xk � y1 � H. So°
x�ac,y�cb rUab ` rUa�b � rUxy. This completes the proof for the first case.

Assume now that pxk, y1q fits together. This means zim�1 � zj0 � 1. By Lemma
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2.5.11rUx b rUy � zi0 b Uǔ1 b z
i1 b � � �b U ˇum�1 b z

im�1b

p
¸

um�ac,v1�cb
rUab ` rUa�bqb zj2 b Uv̌2 b z

j3 b � � �b Uv̌n b zjn�1

� zi0 b Uǔ1 b z
i1 b � � �b U ˇum�1 b z

im�1b

pp
¸

um�ac,v1�cb,|a|¥1 or |b|¥1

rUab ` rUa�bq` δum,v1 � 1qb

zj2 b Uv̌2 b z
j3 b � � �b Uv̌n b zjn�1 .

By applying the induction hypothesis to the term

zi0 b Uǔ1 b � � �b zim�1 b δum,v1 � 1b zj2 b Uv̌2 b � � �b zjn�1

� δum,v1 � rUu1u2...um�1 b
rUv2v3...vn

we obtain rUx b rUy � ¸
x�ac,y�cb

rUab ` rUa�b.

We are now going to deduce the fusion rules of Akpnq. The following result is
proven in [25] and describes the fusion rules of Ahpnq.
Theorem 2.5.12. Let Sh :� tu, pu with fusion u �u � p �p � p, u �p � p �u � u
and trivial conjugation. The fusion rules of pAhpnq, Uhq are given by the free
fusion ring over Sh in such a way that Uu � Uh and Up ` 1 � pu2

ijq.

Using this theorem we obtain the following corollary in the case A � Akpnq.
Corollary 2.5.13. The irreducible corepresentations of Akpnq are described by
the fusion set Sk :� tu, v, p, qu with fusion given by

� u v p q

u H q u H
v p H H v
p H v p H
q u H H q
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and conjugation u � v, p � p, q � q.
The elements of Sk correspond to the following corepresentations.

• The class of the fundamental corepresentation U is Uu.

• The class of U is Uv.

• The class of the corepresentation pu�ij � uijq is Up ` 1

• The class of the corepresentation puij � u�ijq is Uq ` 1

Proof. We only have to prove the part about the concrete description of Uu, Uv,
Up and Uq. The fact that Uu is the class of the fundamental corepresentation is
obvious from the construction. Uv � U follows directly.
It is easy to check that pu�ij � uijq and puij � u�ijq are corepresentation of Akpnq.
We have the decomposition U b U � Uuv ` Up ` 1. Moreover the construction
in this section shows that Uuv is n2�n dimensional and Up is n�1 dimensional.
Since puij �u�ijq is non trivial, it suffices to give at least two linearly independent
intertwiners from the n dimensional corepresentation puij � u�ijq to U b U . Two
such intertwiners are Cn Ñ pCnqb2 : ei ÞÑ ei b ei and Cn Ñ pCnqb2 : ei ÞÑ°
j ej b ej .

The proof for puij � u�ijq works similarly.





Chapter 3

Stable orbit equivalence of
Bernoulli actions of free
groups and isomorphism of
some of their factor actions

This chapter is based on our joint work with Niels Meesschaert and Stefaan
Vaes [138]. We give an elementary proof for Lewis Bowen’s theorem saying that
two Bernoulli actions of two free groups, each having arbitrary base probability
spaces, are stably orbit equivalent. Our methods also show that for all compact
groups K and every free product Γ of infinite amenable groups, the factor
Γ ñ KΓ{K of the Bernoulli action Γ ñ KΓ by the diagonal K-action, is
isomorphic with a Bernoulli action of Γ.

3.1 Introduction

Free, ergodic and probability measure preserving (p.m.p.) actions Γ ñ pX,µq
of countable groups give rise to II1 factors L8pXq � Γ through the group
measure space construction of Murray and von Neumann. It was shown in
[196] that the isomorphism class of the II1 factor L8pXq � Γ only depends on
the orbit equivalence relation on pX,µq given by Γ ñ pX,µq. This led Dye in
[69] to a systematic study of group actions up to orbit equivalence, where he
proved the fundamental result that all free ergodic p.m.p. actions of Z are orbit

51
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equivalent. Note that two such actions need not be isomorphic (using entropy,
spectral measure, etc). In [151] Ornstein and Weiss showed that actually all
orbit equivalence relations of all free ergodic p.m.p. actions of infinite amenable
groups are isomorphic with the unique ergodic hyperfinite equivalence relation
of type II1.

The nonamenable case is far more complex and many striking rigidity results
have been established over the last 20 years, leading to classes of group actions
for which the orbit equivalence relation entirely determines the group and its
action. We refer to [191, 94, 97] for a comprehensive overview of measured
group theory. On the other hand there have so far only been relatively few orbit
equivalence “flexibility” results for nonamenable groups. Two results of this
kind have been obtained recently by Lewis Bowen in [40, 41]. In [40] Bowen
proved that two Bernoulli actions Fn ñ XFn

0 and Fn ñ XFn
1 of the same free

group Fn, but with different base probability spaces, are always orbit equivalent.
Note that this is a nontrivial result because Bowen proved earlier in [39] that
these Bernoulli actions can only be isomorphic if the base probability spaces
pX0, µ0q and pX1, µ1q have the same entropy.

Two free ergodic p.m.p. actions Γi ñ pXi, µiq are called stably orbit equivalent
if their orbit equivalence relations can be restricted to non-negligible measurable
subsets Ui � Xi such that the resulting equivalence relations on U0 and U1
become isomorphic. The number µ1pU1q{µ0pU0q is called the compression
constant of the stable orbit equivalence. In [41] Bowen proved that the Bernoulli
actions Fn ñ XFn

0 and Fm ñ XFm
1 of two different free groups are stably orbit

equivalent with compression constant pn� 1q{pm� 1q.
The first aim of this chapter is to give an elementary proof for the above
two theorems of Bowen. The concrete stable orbit equivalence that we obtain
between Fn ñ XFn

0 and Fm ñ XFm
1 is identical to the one discovered by Bowen.

The difference between the two approaches is however the following: rather
than writing an explicit formula for the stable orbit equivalence, we construct
actions of Fn and Fm on (subsets of) the same space, having the same orbits
and satisfying an abstract characterization of the Bernoulli action.

Secondly our simpler methods also yield a new orbit equivalence flexibility
(actually isomorphism) result that we explain now. Combining the work of
many hands [99, 115, 98] it was shown in [81] that every nonamenable group
admits uncountably many non orbit equivalent actions (see [109] for a survey).
Nevertheless it is still an open problem to give a concrete construction producing
such an uncountable family. For a while it has been speculated that for any
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given nonamenable group Γ the actions

!
Γ ñ KΓ{K

��� K a compact second countable

group acting by diagonal translation on KΓ
)

(3.1)

are non orbit equivalent for nonisomorphic K. Indeed, in [175, Proposition
5.6] it was shown that this is indeed the case whenever every 1-cocycle for the
Bernoulli action Γ ñ KΓ with values in either a countable or a compact group
G is cohomologous to a group homomorphism from Γ to G. By Popa’s cocycle
superrigidity theorems [168, 171], this is the case when Γ contains an infinite
normal subgroup with the relative property (T) or when Γ can be written as
the direct product of an infinite group and a nonamenable group. Conjecturally
the same is true whenever the first `2-Betti number of Γ vanishes (cf. [158]).

In the last section of this chapter we disprove the above speculation whenever
Γ � Λ1 � � � � �Λn is the free product of n infinite amenable groups, in particular
when Γ � Fn. We prove that for these Γ and for every compact second countable
group K the action Γ ñ KΓ{K is isomorphic with a Bernoulli action of Γ.
As we shall see, the special case Γ � Fn is a very easy generalization of [152,
Appendix C.(b)] where the same result is proven for K � Z{2Z and Γ � F2.

More generally, denote by G the class of countably infinite groups Γ for which
the action Γ ñ KΓ{K is isomorphic with a Bernoulli action of Γ. Then by
[152] the class G contains all infinite amenable groups. We prove in Theorem
3.5.2 that G is stable under taking free products. By the results cited above,
G does not contain groups that admit an infinite normal subgroup with the
relative property (T) and G does not contain groups that can be written as the
direct product of an infinite group and a nonamenable group. So it is a very
intriguing problem which groups belong to G.

Terminology and notations

A measure preserving action Γ ñ pX,µq of a countable group Γ on a standard
probability space pX,µq is called essentially free if a.e. x P X has a trivial
stabilizer and is called ergodic if the only Γ-invariant measurable subsets of X
have measure 0 or 1. Two free ergodic probability measure preserving (p.m.p.)
actions Γ ñ pX,µq and Λ ñ pY, ηq are called

• conjugate, if there exists an isomorphism of groups δ : Γ Ñ Λ and an
isomorphism of probability spaces ∆ : X Ñ Y such that ∆pg � xq �
δpgq �∆pxq for all g P Γ and a.e. x P X;
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• orbit equivalent, if there exists an isomorphism of probability spaces
∆ : X Ñ Y such that ∆pΓ � xq � Λ �∆pxq for a.e. x P X;

• stably orbit equivalent, if there exists a nonsingular isomorphism ∆ : U Ñ V
between non-negligible measurable subsets U � X and V � Y such that
∆pΓ � xX Uq � Λ �∆pxq X V for a.e. x P U . Such a ∆ automatically scales
the measure by the constant ηpVq{µpUq, called the compression constant
of the stable orbit equivalence.

We say that two p.m.p. actions Γ ñ pXi, µiq of the same group are isomorphic if
they are conjugate w.r.t. the identity isomorphism id : Γ Ñ Γ, i.e. if there exists
an isomorphism of probability spaces ∆ : X0 Ñ X1 such that ∆pg �xq � g �∆pxq
for all g P Γ and a.e. x P X0.

Recall that for every countable group Γ and standard probability space pX0, µ0q,
the Bernoulli action of Γ with base space pX0, µ0q is the action Γ ñ XΓ

0 on the
infinite product XΓ

0 equipped with the product probability measure, given by
pg � xqh � xhg for all g, h P Γ and x P XΓ

0 . If Γ is an infinite group and pX0, µ0q
is not reduced to a single atom of mass 1, then Γ ñ XΓ

0 is essentially free and
ergodic.

Statement of the main results

We first give an elementary proof for the following theorem of Lewis Bowen.

Theorem 3.A (Bowen [41, 40]). For fixed n and varying base probability space
pX0, µ0q the Bernoulli actions Fn ñ XFn

0 are orbit equivalent.

If also n varies, the Bernoulli actions Fn ñ XFn
0 and Fm ñ Y Fm

0 are stably
orbit equivalent with compression constant pn� 1q{pm� 1q.

Next we study factors of Bernoulli actions and prove the following result.

Theorem 3.B. If Γ � Λ1 � � � � � Λn is the free product of n infinite amenable
groups and if K is a nontrivial second countable compact group equipped with its
normalized Haar measure, then the factor action Γ ñ KΓ{K of the Bernoulli
action Γ ñ KΓ by the diagonal translation action of K is isomorphic with a
Bernoulli action of Γ. In particular, keeping n fixed and varying the Λi and K,
all the actions Γ ñ KΓ{K are orbit equivalent.

In the particular case where Γ � Fn, the action Γ ñ KΓ{K is isomorphic with
the Bernoulli action Γ ñ pK � � � � �KqΓ whose base space is an n-fold direct
product of copies of K.
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3.2 Preliminaries

Let pX,µq and pY, ηq be standard probability spaces. We call ∆ a probability
space isomorphism between pX,µq and pY, ηq if ∆ is a measure preserving Borel
bijection between conegligible subsets of X and Y . We call ∆ a nonsingular
isomorphism if ∆ is a null set preserving Borel bijection between conegligible
subsets of X and Y .

Given a sequence of standard probability spaces pXn, µnq, we consider the
infinite product X � ±

nXn equipped with the infinite product measure µ.
Then, pX,µq is a standard probability space. The coordinate maps πn : X Ñ Xn

are measure preserving and independent. Moreover, the Borel σ-algebra on X
is the smallest σ-algebra such that all πn are measurable.

Conversely, assume that pY, ηq is a standard probability space and that θn :
Y Ñ Xn is a sequence of Borel maps. Then, the following two statements are
equivalent.

1. There exists an isomorphism of probability spaces ∆ : Y Ñ X such that
πnp∆pyqq � θnpyq for a.e. y P Y .

2. The maps θn are measure preserving and independent, and the σ-algebra
on Y generated by the maps θn equals the entire Borel σ-algebra of Y up
to null sets.

The proof of this equivalence is standard: if the θn satisfy the conditions in 2,
one defines ∆pyqn :� θnpyq.
Assume that Γ ñ pX,µq and Λ ñ pY, ηq are essentially free ergodic p.m.p.
actions. Assume that ∆ : X Ñ Y is an orbit equivalence. By essential freeness,
we obtain the a.e. well defined Borel map ω : Γ�X Ñ Λ determined by

∆pg � xq � ωpg, xq �∆pxq for all g P Γ and a.e. x P X .

Then, ω is a 1-cocycle for the action Γ ñ pX,µq with values in the group Λ. In
general, whenever G is a Polish group and Γ ñ pX,µq is a p.m.p. action, we
call a Borel map ω : Γ�X Ñ G a 1-cocycle if ω satisfies

ωpgh, xq � ωpg, h � xqωph, xq for all g, h P Γ and a.e. x P X .

Two 1-cocycles ω, ω1 : Γ�X Ñ G are called cohomologous if there exists a Borel
map ϕ : X Ñ G such that

ω1pg, xq � ϕpg � xqωpg, xqϕpxq�1 for all g P Γ and a.e. x P X .
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Also a stable orbit equivalence gives rise to a 1-cocycle, as follows. So assume
that Γ ñ pX,µq and Λ ñ pY, ηq are essentially free ergodic p.m.p. actions and
that ∆ : U Ñ V is a nonsingular isomorphism between the nonnegligible subsets
U � X and V � Y , such that ∆pU X Γ � xq � V X Λ �∆pxq for a.e. x P U . To
define the Zimmer 1-cocycle ω : Γ � X Ñ Λ, one first uses the ergodicity of
Γ ñ pX,µq to choose a Borel map p : X Ñ U satisfying ppxq P Γ � x for a.e.
x P X. Then, ω : Γ�X Ñ Λ is uniquely defined such that

∆pppg � xqq � ωpg, xq �∆pppxqq for all g P Γ and a.e. x P X .

One checks easily that ω is a 1-cocycle and that, up to cohomology, ω does not
depend on the choice of p : X Ñ U .

We often use 1-cocycles for p.m.p. actions Γ ñ pX,µq of a free product group
Γ � Γ1 �Γ2. Given 1-cocycles ωi : Γi�X Ñ G, one checks easily that there is a
unique 1-cocycle ω : Γ�X Ñ G, up to equality a.e., satisfying ωpg, xq � ωipg, xq
for all g P Γi and a.e. x P X.

3.3 Orbit equivalence of co-induced actions

Let Λ ñ pX,µq be a p.m.p. action. Assume that Λ   G is a subgroup.
The co-induced action of Λ ñ X to G is defined as follows. Choose a map
r : GÑ Λ such that rpλgq � λrpgq for all g P G,λ P Λ and such that rpeq � e.
Note that the choice of such a map r is equivalent to the choice of a section
θ : ΛzΓ Ñ Γ satisfying θpΛeq � e. Indeed, the formula g � rpgq θpΛgq provides
the correspondence between θ and r.

Once we have chosen r : GÑ Λ, we can define a 1-cocycle Ω : ΛzG�GÑ Λ for
the right action of G on ΛzG, given by ΩpΛk, gq � rpkq�1rpkgq for all g, k P G.

Classically, whenever ω : G � X Ñ Λ is a 1-cocycle for an action of G on
X, we can induce an action Λ ñ Y to an action G ñ X � Y given by
g � px, yq � pg � x, ωpg, xq � yq.
The co-induced action is defined by a similar formula. So assume that Λ ñ

pX,µq is a p.m.p. action and that Λ   G is a subgroup. Choose r : GÑ Λ with
the associated 1-cocycle Ω : ΛzG�GÑ Λ, as above. Then the formula

Gñ XΛzG where pg � yqΛk � ΩpΛk, gq � yΛkg

yields a well defined action of G on the product probability space XΛzG. It is
easy to check that Gñ XΛzG is a p.m.p. action and that pλ � yqΛe � λ � yΛe for
all λ P Λ and y P XΛzG. A different choice of r : GÑ Λ leads to a cohomologous
1-cocycle Ω and hence an isomorphic action.
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Given a subgroup Λ   G, a subset I � G is called a right transversal of Λ   G
if I X Λg is a singleton for every g P G.
Up to isomorphism the co-induced action can be characterized as the unique
p.m.p. action Gñ Y for which there exists a measure preserving map ρ : Y Ñ X
with the following properties.

1. ρpλ � yq � λ � ρpyq for all λ P Λ and a.e. y P Y .

2. The factor maps y ÞÑ ρpg � yq, g P G, generate the Borel σ-algebra on Y ,
up to null sets.

3. If I � G is a right transversal of Λ   G, then the maps y ÞÑ ρpg � yq, g P I,
are independent.

To prove this characterization, first observe that the co-induced action satisfies
properties 1, 2 and 3 in a canonical way, with ρpyq � yΛe. Conversely assume
that G ñ Y satisfies these properties. Fix a right transversal I � G for
Λ   G, with e P I. Combining properties 1 and 2, we see that the factor
maps y ÞÑ ρpg � yq, g P I, generate the Borel σ-algebra on Y , up to null sets.
A combination of property 3 and the characterization of product probability
spaces in Section 3.2 then provides the isomorphism of probability spaces
∆ : Y Ñ XΛzG given by ∆pyqΛg � ρpg � yq for all y P Y , g P I. The right
transversal I � G for Λ   G allows to uniquely define the map r : GÑ Λ such
that rpλgq � λ for all λ P Λ and g P I. This choice of r provides a formula for
the co-induced action Gñ XΛzG. It is easy to check that ∆pg � yq � g �∆pyq
for all g P G and a.e. y P Y .

Remark 3.3.1.
1. The above characterization of the co-induced action yields the following
result that we use throughout the chapter: the co-induction of the Bernoulli
action Λ ñ pX0, µ0qΛ is isomorphic with the Bernoulli action Gñ pX0, µ0qG.
Indeed, the Bernoulli action Gñ pX0, µ0qG, together with the canonical factor
map XG

0 Ñ XΛ
0 , satisfies the above characterization of the co-induced action.

2. In certain cases, for instance if G � Γ�Λ, there exists a group homomorphism
π : GÑ Λ satisfying πpλq � λ for all λ P Λ. Then r : GÑ Λ can be taken equal
to π and the co-induced action Gñ XΛzG is of the form pg � yqΛk � πpgq � yΛkg
for all g, k P G and y P XΛzG.

3. We often make use of diagonal actions: if Λ ñ pX,µq and Λ ñ pY, ηq
are p.m.p. actions, we consider the diagonal action Λ ñ X � Y given by
λ � px, yq � pλ �x, λ �yq. We make the following simple observation: if Λ   G and
if we denote by Gñ rX, resp. Gñ rY , the co-induced actions of Λ ñ X, resp.
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Λ ñ Y , to G, then the co-induced action of the diagonal action Λ ñ X � Y to
G is precisely the diagonal action Gñ rX � rY .

4. Assume that Λ ñ pX,µq is a p.m.p. action and that Λ   G is a subgroup.
Denote by G ñ Y the co-induced action and by ρ : Y Ñ X the canonical
Λ-equivariant factor map. Whenever ∆0 : X Ñ X is a p.m.p. automorphism
that commutes with the Λ-action, there is a unique p.m.p. automorphism
∆ : Y Ñ Y , up to equality a.e., that commutes with the G-action and such that
ρp∆pyqq � ∆0pρpyqq for a.e. y P Y . Writing Y � XΛzΓ, the automorphism ∆ is
just the diagonal product of copies of ∆0. Later we use this easy observation to
canonically lift a p.m.p. action K ñ pX,µq of a compact group K, commuting
with the Λ-action, to a p.m.p. action K ñ Y that commutes with the G-action.
Moreover, ρ becomes pΛ � Kq-equivariant. Writing Y � XΛzΓ, the action
K ñ Y is the diagonal K-action.

We prove that orbit equivalence is preserved under co-induction to a free product.
We actually show that the preservation is “K-equivariant” in a precise way
that will be needed in the proof of Theorem 3.B. The case where K � teu, i.e.
co-induction from Λ to Γ � Λ, is due to Lewis Bowen [41]. Recall that similarly
as in the case of countable groups, a p.m.p. action G ñ pX,µq of a second
countable locally compact group G is called essentially free if a.e. x P X has a
trivial stabilizer (cf. Lemma 3.5.3 in the appendix).

Theorem 3.3.2. Let Λ0,Λ1 and Γ be countable groups and K a compact second
countable group. Assume that Λi � K ñ pXi, µiq are essentially free p.m.p.
actions. Denote Gi :� Γ � Λi and denote by Gi ñ Yi the co-induced action of
Λi ñ Xi to Gi, together with the natural actions K ñ Yi that commute with
Gi ñ Yi (see Remark 3.3.1.4).

• If the actions Λi ñ Xi{K are orbit equivalent, then the actions Gi ñ Yi{K
are orbit equivalent.

• If the actions Λi ñ Xi{K are conjugate w.r.t. the group isomorphism
δ : Λ0 Ñ Λ1, then the actions Gi ñ Yi{K are conjugate w.r.t. the group
isomorphism id � δ : G0 Ñ G1.

Proof. We start by proving the first item of the theorem.

Let ∆0 : X0{K Ñ X1{K be an orbit equivalence between the actions Λi ñ
Xi{K. Denote by x ÞÑ x the factor map from Xi to Xi{K. Since K acts
essentially freely on Xi and K is compact, Lemma 3.5.3 in the appendix
provides measurable maps θi : Xi Ñ K satisfying θipk � xq � kθipxq a.e. and
such that

Θi : Xi Ñ K �Xi{K : x ÞÑ pθipxq, xq
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is a measure preserving isomorphism. Defining ∆ :� Θ�1
1 �pid�∆0q�Θ0, we have

found a measure preserving isomorphism ∆ : X0 Ñ X1 that is K-equivariant
and satisfies ∆ppΛ0 �Kq � xq � pΛ1 �Kq �∆pxq for a.e. x P X1. Using this ∆
we may assume that Λ0,Λ1 and K act on the same probability space pX,µq
such that the K-action commutes with both the Λi-actions and such that
pΛ0�Kq � x � pΛ1�Kq � x for a.e. x P X. Here and in what follows, we denote
the action of Λ0 �K by � and the action of Λ1 �K by �. We have k � x � k � x
for all k P K and a.e. x P X.

Write Y � XΛ1zΓ�Λ1 and denote by � the co-induced action G1 ñ Y of Λ1 ñ X
to G1. Also denote by � the diagonal action K ñ Y , which commutes with
G1 ñ Y . Define the pΛ1 �Kq-equivariant factor map ρ : Y Ñ X : ρpyq � yΛ1e.

Define the Zimmer 1-cocycles

η : Λ0 �X Ñ Λ1 �K : ηpλ0, xq � x � λ0 � x for a.e. x P X1, λ0 P Λ0 ,

η1 : Λ1 �X Ñ Λ0 �K : η1pλ1, xq � x � λ1 � x for a.e. x P X1, λ1 P Λ1 .

Since the Λ0-action commutes with the K-action on X, we have that

ηpλ0, k � xq � kηpλ0, xqk�1 for all k P K,λ0 P Λ0 and a.e. x P X . (3.2)

We define a new action G0 ñ Y denoted by � and determined by

γ �y � γ �y for γ P Γ, y P Y and λ0 �y � ηpλ0, ρpyqq �y for λ0 P Λ0, y P Y .

Because of (3.2), the action G0 ñ Y commutes with K ñ Y .

Define ω : G0 � Y Ñ G1 �K as the unique 1-cocycle for the action G0
�
ñ Y

satisfying ωpγ, yq � γ for all γ P Γ and ωpλ0, yq � ηpλ0, ρpyqq for all λ0 P Λ0.
Then the equality g � y � ωpg, yq � y holds when g P Γ and when g P Λ0. So the
same equality holds for all g P G0 and a.e. y P Y . In particular G0 � y � G1 � y
for a.e. y P Y {K.

Define ω1 : G1 � Y Ñ G0 �K as the unique 1-cocycle satisfying ω1pγ, yq � γ
for all γ P Γ and ω1pλ1, yq � η1pλ1, ρpyqq for all λ1 P Λ1. As above, it follows
that g � y � ω1pg, yq � y for all g P G1 and a.e. y P Y . Hence, G1 � y � G0 � y for
a.e. y P Y {K. We already proved the converse inclusion so that G1 � y � G0 � y
for a.e. y P Y {K.

We prove now that the action G0
�
ñ Y together with the Λ0-equivariant factor

map ρ : Y Ñ X satisfies the abstract characterization for the co-induced action
of Λ0 ñ X to G0. Once this is proven, the theorem follows because ρ is moreover
K-equivariant and the action G0 ñ Y commutes with the K ñ Y (see Remark
3.3.1.4).
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We first need to prove that the maps y ÞÑ ρpg � yq are independent and
identically distributed when g runs through a right transversal of Λ0 � G0. If
g P Gi � Γ � Λi, denote by |g| the number of letters from Γ� teu that appear
in a reduced expression of g. By convention, put |g| � 0 if g P Λi. Define the
subsets In � G0 given by I0 :� teu and

In :�  
g P G0

�� |g| � n and the leftmost letter

of a reduced expression of g belongs to Γ� teu ( . (3.3)

Similarly define Jn � G1 and note that
�8
n�0 Jn is a right transversal for

Λ1   Γ �Λ1. So, in the construction of the co-induced action, we can choose the
Λ1-equivariant map r : G1 Ñ Λ1 such that rpgq � e for all g P Jn and all n P N.
Hence pg � yqΛ1e � yΛ1g for all g P Jn, n P N and a.e. y P Y . For j P Λ1zG1 we
put |j| � n if j � Λ1g with g P Jn.
Denote ωpg, yq � pω1pg, yq, ωKpg, yqq with ω1pg, yq P G1 and ωKpg, yq P K.
Similarly write ηpλ, xq � pη1pλ, xq, ηKpλ, xqq. Note that for λ P Λ0 � teu we
have η1pλ, xq � e for a.e. x P X. Indeed, if η1pλ, xq � e for a fixed λ P Λ0 � teu,
then the element pλ, ηKpλ, xq�1q of Λ0�K stabilizes x and the essential freeness
of Λ0�K ñ X implies that this can only happen for x belonging to a negligible
subset of X. One then proves easily by induction on n that

• for a.e. y P Y and all n P N, the map g ÞÑ ω1pg, yq is a bijection of In onto
Jn,

• for all n P N, g P In, the map y ÞÑ ωpg, yq only depends on the coordinates
yj , |j| ¤ n� 1.

Since for all g P In we have ω1pg, yq P Jn, it follows that
ρpg � yq � pg � yqΛ1e � pωpg, yq � yqΛ1e � ωKpg, yq � yΛ1ω1pg,yq (3.4)

for all n P N, g P In and a.e. y P Y . We now use Lemma 3.3.4 to prove that
for all n P N, the set ty ÞÑ ρpg � yq | g P Inu forms a family of independent
random variables that are independent of the coordinates yj , |j| ¤ n� 1, and
that only depend on the coordinates yj , |j| ¤ n. More concretely, we write
Jn � tΛ1g | |g| ¤ nu and we apply Lemma 3.3.4 to the countable set Jn�Jn�1,
the direct product

Z :� XJn�1 �XJn�Jn�1

and the family of measurable maps ωg : Z Ñ K � pJn � Jn�1q indexed by
g P In, only depending on the coordinates yj , j P Jn�1 and given by

ωg : y ÞÑ pωKpg, yq,Λ1ω1pg, yqq .
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Since g ÞÑ ω1pg, yq is a bijection of In onto Jn, we have that g ÞÑ Λ1ω1pg, yq is
a bijection of In onto Jn � Jn�1. A combination of Lemma 3.3.4 and formula
(3.4) then implies that ty ÞÑ ρpg �yq | g P Inu is a family of independent random
variables that are independent of the coordinates yj , j P Jn�1. By construction,
these random variables only depend on the coordinates yj , |j| ¤ n. Having
proven these statements for all n P N, it follows that ty ÞÑ ρpg � yq | g P �n Inu
is a family of independent random variables.

Denote by B0 the smallest σ-algebra on Y such that Y Ñ X1 : y ÞÑ ρpg � yq is
B0-measurable for all g P G0. It remains to prove that B0 is the entire σ-algebra
of Y . Note that by construction, the map Y Ñ Y : y ÞÑ g � y is B0-measurable
for all g P G0. Since ρ is K-equivariant and the actions K ñ Y and G0 ñ Y
commute, we also get that the map y ÞÑ k � y is B0-measurable for every k P K.
We must prove that y ÞÑ yi is B0-measurable for every n P N and i P Λ1zG1
with |i| � n. This follows by induction on n, because for all g P Jn we have

yΛ1g � ρpg � yq � ρpω1pg, yq � yq

and because y ÞÑ ω1pg, yq only depends on the coordinates yj , |j| ¤ n� 1.

To prove the second item of the theorem, it suffices to make the following
observation. If the actions Λi ñ Xi{K are conjugate w.r.t. the isomorphism
δ : Λ0 Ñ Λ1, then in the proof of the first item, the Zimmer 1-cocycle η is of
the form ηpλ0, xq � pδpλ0q, ηKpλ0, xqq. So the 1-cocycle ω : G0 � Y Ñ G1 �K
is of the form ωpg, yq � ppid � δqpgq, ωKpg, yqq. This immediately implies that
the actions Gi ñ Yi{K are conjugate w.r.t. the isomorphism id � δ.
Corollary 3.3.3 (Bowen [41]). For fixed n and varying base probability space
pX0, µ0q the Bernoulli actions Fn ñ XFn

0 are orbit equivalent.

Proof. By Remark 3.3.1.1, the co-induction of a Bernoulli action is again a
Bernoulli action over the same base space. Let X0 and X1 be nontrivial base
probability spaces. By Dye’s theorem [69], the Bernoulli actions Zñ XZ

0 and
Z ñ XZ

1 are orbit equivalent. By Theorem 3.3.2 their co-induced actions to
Fn � Fn�1 �Z are orbit equivalent. But these co-induced actions are isomorphic
to the Bernoulli actions Fn ñ XFn

i .

We used the following easy independence lemma.

Lemma 3.3.4. Let pX,µq and pX0, µ0q be standard probability spaces and
let H ñ pX0, µ0q be a measure preserving action. Let I be a countable set.
Consider Z � X �XI

0 with the product probability measure. Assume that F is a
family of measurable maps ω : Z Ñ H � I. Write ωpx, yq � pω1px, yq, ω2px, yqq.
Assume that
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• for almost every z P Z, the map F Ñ I : ω ÞÑ ω2pzq is injective,

• for every ω P F , the map z ÞÑ ωpzq only depends on the variable Z Ñ X :
px, yq ÞÑ x.

Then, tpx, yq ÞÑ ω1px, yq � yω2px,yq | ω P Fu is a family of independent identically
pX0, µ0q-distributed random variables that are independent of px, yq ÞÑ x.

Proof. Since the maps ω P F only depend on the variable px, yq ÞÑ x, we
view ω P F as a map from X to H � I. We have to prove that tpx, yq ÞÑ
ω1pxq �yω2pxq | ω P Fu is a family of independent identically pX0, µ0q-distributed
random variables that are independent of px, yq ÞÑ x. But conditioning on
x P X, we get that the variables

XI
0 Ñ X0 : y ÞÑ ω1pxq � yω2pxq

are independent and pX0, µ0q-distributed because the coordinates ω2pxq, for
ω P F , are distinct elements of I and because the action H ñ X0 is measure
preserving. So the lemma is proven.

3.4 Stable orbit equivalence of Bernoulli actions

Denote by a, b the standard generators of F2. Denote by xay and xby the
subgroups of F2 generated by a, resp. b. Let pX0, µ0q be a standard probability
space and consider the Bernoulli action F2 ñ XF2

0 given by pg � xqh � xhg.

Whenever pX0, µ0q is a probability space, the Bernoulli action Γ ñ XΓ
0 can be

characterized up to isomorphism as the unique p.m.p. action Γ ñ X for which
there exists a factor map π : X Ñ X0 such that the maps x ÞÑ πpg � xq, g P Γ,
are independent and generate, up to null sets, the whole σ-algebra of X.

We prove the stable orbit equivalence of Bernoulli actions as a combination of
the following three lemmas. Fix κ P N, κ ¥ 2, and denote X0 � t0, . . . , κ� 1u
equipped with the uniform probability measure. Let pY0, η0q be any standard
probability space (that is not reduced to a single atom). Denote by r : F2 Ñ
Z{κZ the group morphism determined by rpaq � 0 and rpbq � 1. Identify X0
with Z{κZ and denote by � the action of Z{κZ on X0 given by addition in Z{κZ.
Lemma 3.4.1. Consider the action F2 ñ X :� X

xbyzF2
0 given by pg � xqxbyh �

rpgq � xxbyhg. Let F2 ñ Y F2
0 be the Bernoulli action. Then the diagonal action

F2 ñ X�Y F2
0 given by g �px, yq � pg �x, g �yq is orbit equivalent with a Bernoulli

action of F2.
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Lemma 3.4.2. The action F2 ñ X defined in Lemma 3.4.1 is stably orbit
equivalent with compression constant 1{κ with a Bernoulli action of F1�κ.

Lemma 3.4.3. Let Γ ñ pX,µq be any free ergodic p.m.p. action of an infinite
group Γ. Assume that κ P N and that Γ ñ X is stably orbit equivalent with
compression constant 1{κ with a Bernoulli action of some countable group
Λ. Let pY0, η0q be any standard probability space and Γ ñ Y Γ

0 the Bernoulli
action. Then also the diagonal action Γ ñ X � Y Γ

0 is stably orbit equivalent
with compression constant 1{κ with a Bernoulli action of Λ.

Proof of Theorem 3.A

We already deduce Theorem 3.A from the above three lemmas.

Proof of Theorem 3.A. We first prove that Lemmas 3.4.1, 3.4.2, 3.4.3 yield a
Bernoulli action of F2 that is stably orbit equivalent with compression constant
1{κ with a Bernoulli action of F1�κ. Indeed, by Lemma 3.4.1 a Bernoulli action
of F2 is orbit equivalent with the diagonal action F2 ñ X � Y F2

0 . By Lemma
3.4.2, the action F2 ñ X is stably orbit equivalent with compression constant
1{κ with a Bernoulli action of F1�κ. But then, Lemma 3.4.3 says that the same
holds for the diagonal action F2 ñ X � Y F2

0 .

Combined with Corollary 3.3.3 it follows that all Bernoulli actions of F2 are
stably orbit equivalent with all Bernoulli actions of Fm, m ¥ 2, with compression
constant 1{pm � 1q. By transitivity of stable orbit equivalence, all Bernoulli
actions of Fn and Fm are stably orbit equivalent with compression constant
pn� 1q{pm� 1q.

Proof of Lemma 3.4.1

Proof of Lemma 3.4.1. View Z as the subgroup of F2 generated by b. Let
Z ñ Y Z

0 be the Bernoulli action. Consider the action Z ñ X0 � Y Z
0 given

by g � px, yq � prpgq � x, g � yq. Note that Z ñ X0 � Y Z
0 is a free ergodic

p.m.p. action. Using Remark 3.3.1 (statements 1, 2 and 3), one gets that the
action F2 ñ X � Y F2

0 given in the formulation of Lemma 3.4.1 is precisely the
co-induction of Z ñ X0 � Y Z

0 to F2. By Dye’s theorem [69], the free ergodic
p.m.p. action Zñ X0 � Y Z

0 is orbit equivalent with a Bernoulli action of Z. By
Remark 3.3.1.1, the co-induction of the latter is a Bernoulli action of F2. So by
Theorem 3.3.2, the action F2 ñ X � Y F2

0 is orbit equivalent with a Bernoulli
action of F2.
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Proof of Lemma 3.4.2

Proof of Lemma 3.4.2. We have X � X
xbyzF2
0 and the action F2 ñ X is given

by pg �xqxbyh � rpgq �xxbyhg. Write Z � XZ
0 and denote by ρ : X Ñ Z the factor

map given by ρpxqn � xxbyan . Denote by � the Bernoulli action Zñ Z and note
that ρpan � xq � n � ρpxq for all x P X and n P Z.
Define the subsets Vi, i � 0, . . . , κ � 1, of Z given by Vi :� tz P Z | z0 � iu.
Similarly define Wi � X given by Wi � ρ�1pViq. Note that W0 has measure
1{κ. To prove the lemma we define a p.m.p. action of F1�κ on W0 such that
F1�κ � x � F2 � xXW0 for a.e. x PW0 and such that F1�κ ñW0 is a Bernoulli
action.

By Dye’s theorem [69], there exists a Bernoulli action Z
�
ñ V0 such that

Z � z � Z � z X V0 for a.e. z P V0. Denote by η : Z� V0 Ñ Z the corresponding
1-cocycle for the �-action determined by n � z � ηpn, zq � z for n P Z and a.e.
z P V0.

Since the Bernoulli action Z �
ñ Z is ergodic and since all the subsets Vi � Z have

the same measure, we can choose measure preserving isomorphisms αi : V0 Ñ Vi
satisfying αipzq P Z � z for a.e. z P Z and take α0 to be the identity isomorphism.
Let ϕ0

i : V0 Ñ Z and ψ0
i : Vi Ñ Z be the maps determined by αipzq � ϕ0

i pzq � z
for a.e. z P V0 and α�1

i pzq � ψ0
i pzq � z for a.e. z P Vi. Define the corresponding

measure preserving isomorphisms θi : W0 ÑWi given by θipxq � ϕipxq � x and
θ�1
i pxq � ψipxq � x where ϕipxq � aϕ

0
i pρpxqq and ψipxq � aψ

0
i pρpxqq.

Denote by a and bi, i � 0, . . . , κ� 1, the generators of F1�κ. Define the p.m.p.
action F1�κ

�
ñW0 given by

an � x � aηpn,ρpxqq � x and bi � x � θ�1
i�1pb � θipxqq for all x PW0 .

Note that the action is well defined: if x P W0, then θipxq P Wi and hence
b � θipxq P Wi�1. We use the convention that Wκ � W0 and θκ � id. Observe
that ρpan � xq � n � ρpxq for all n P Z and a.e. x PW0.

It remains to prove that F1�κ � x � F2 � x X W0 for a.e. x P W0 and that
F1�κ ñW0 is a Bernoulli action.

Denote by ω : F1�κ�W0 Ñ F2 the unique 1-cocycle for the �-action determined
by

ωpan, xq � aηpn,ρpxqq

and
ωpbi, xq � ψi�1pb � θipxqq b ϕipxq .

By construction, the formula g �x � ωpg, xq �x holds for all g P ta, b0, . . . , bκ�1u
and a.e. x P W0. Since ω is a 1-cocycle for the action F1�κ

�
ñ W0, the same
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formula holds for all g P F1�κ and a.e. x P W0. In particular, F1�κ � x �
F2 �xXW0 for a.e. x PW0. To prove the converse inclusion we define the inverse
1-cocycle for ω.

Define q0 : Z Ñ V0 given by q0pzq � α�1
i pzq when z P Vi. Denote by η1 :

Z�Z Ñ Z the 1-cocycle for the �-action determined by q0pn �zq � η1pn, zq�q0pzq.
Whenever z P V0, we have z � q0pzq and hence

η1pηpn, zq, zq�z � η1pηpn, zq, zq�q0pzq � q0pηpn, zq�zq � q0pn�zq � n�z . (3.5)
Since � is an essentially free action of Z, it follows that η1pηpn, zq, zq � n for all
n P Z and a.e. z P V0.

Denote by ω1 : F2 �X Ñ F1�κ the unique 1-cocycle for the �-action determined
by

ω1pan, xq � aη
1pn,ρpxqq for n P Z and a.e. x P X,

and
ω1pb, xq � bi for a.e. x PWi.

Define q : X ÑW0 given by qpxq � θ�1
i pxq when x PWi. Note that ρpqpxqq �

q0pρpxqq for a.e. x P X. We prove that qpg � xq � ω1pg, xq � qpxq for all g P F2
and a.e. x P X. If g � an for some n P Z, we know that both qpg � xq and
ω1pg, xq � qpxq belong to xay � x. So to prove that they are equal, it suffices to
check that they have the same image under ρ. The following computation shows
that this is indeed the case.

ρpqpan � xqq � q0pρpan � xqq � q0pn � ρpxqq � η1pn, ρpxqq � q0pρpxqq ,
while

ρpω1pan, xq � qpxqq � ρpaη1pn,ρpxqq � qpxqq

� η1pn, ρpxqq � ρpqpxqq � η1pn, ρpxqq � q0pρpxqq .

Since by definition of the action � we have that bi � θ�1
i pxq � θ�1

i�1pb � xq
whenever x P Wi, the formula ω1pg, xq � qpxq � qpg � xq also holds when g � b.
Hence, the same formula holds for all g P F2 and a.e. x P X. In particular,
F2 � x XW0 � F1�κ � x for a.e. x P W0. The converse inclusion was already
proven above. Hence, F1�κ � x � F2 � xXW0 for a.e. x PW0.

Denote by J � F1�κ the union of teu and all the reduced words that start with
one of the letters b�1

i , i � 0, . . . , κ� 1. Note that J is a right transversal for
xay   F1�κ. It remains to prove that

tW0 Ñ V0 : x ÞÑ ρpg � xq | g P J u
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is a family of independent random variables that generate, up to null sets, the
whole σ-algebra on W0. Indeed, we already know that Z �

ñ V0 is a Bernoulli
action so that it will follow that F1�κ ñW0 is the co-induction of a Bernoulli
action, hence a Bernoulli action itself (see Remark 3.3.1.1).

We equip both F2 and F1�κ with a length function. For g P F2 we denote by
|g| the number of letters b�1 appearing in the reduced expression of g, while for
g P F1�κ we denote by |g| the number of letters b�1

i , i � 0, . . . , κ� 1, appearing
in the reduced expression of g. By induction on the length of g, one easily checks
that |ωpg, xq| ¤ |g| for all g P F1�κ and a.e. x PW0, and that |ω1pg, xq| ¤ |g| for
all g P F2 and a.e. x P X.

We next claim that

ω1pωpg, xq, xq � g for all g P F1�κ and a.e. x PW0. (3.6)

Once this claim is proven, it follows that |ωpg, xq| � |g| for all g P F1�κ and
a.e. x P W0 : indeed, the strict inequality |ωpg, xq|   |g| would lead to the
contradiction

|g| � |ω1pωpg, xq, gq| ¤ |ωpg, xq|   |g| .
First note that for g � an formula (3.6) follows immediately from (3.5). So it
remains to prove (3.6) when g � bi. First observe that ω1pϕipxq, xq � e for a.e.
x PW0. Indeed,

ω1pϕipxq, xq � x � qpϕipxq � xq � qpθipxqq � x

and since the �-action of xay on W0 is essentially free, it follows that
ω1pϕipxq, xq � e. Similarly, ω1pψipxq, xq � e for a.e. x P Wi. Take x P W0
and write x1 :� bϕipxq � x. Note that x1 � b � θipxq and that x1 PWi�1. So,

ω1pωpbi, xq, xq � ω1pψi�1px1q b ϕipxq, xq

� ω1pψi�1px1q, x1qω1pb, θipxqqω1pϕipxq, xq � e bi e � bi .

So (3.6) holds for g � an and g � bi. Hence (3.6) holds for all g P F1�κ. Note
that (3.6) implies that the action F1�κ

�
ñ W0 is essentially free. Indeed, if

g P F1�κ, x PW0 and g �x � x, it follows that ωpg, xq �x � x. Since the �-action
is essentially free, we conclude that ωpg, xq � e. But then by (3.6)

g � ω1pωpg, xq, xq � ω1pe, xq � e .

Define the subsets Cpnq � xbyzF2 given by Cpnq :� txbyg | g P F2, |g| ¤ nu. Also
define Jn :� tg P J | |g| ¤ nu. We prove by induction on n that the following
two statements hold.
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1n. If g P F1�κ and |g| ¤ n, then x ÞÑ ωpg, xq only depends on the coordinates
xi, i P Cpnq.

2n. The set tW0 Ñ V0 | x ÞÑ ρpg � xq | g P Jnu is a family of independent
random variables that only depend on the coordinates xi, i P Cpnq.

Since e is the only element in J of length 0, statements 10 and 20 are trivial.
Assume that statements 1n and 2n hold for a given n.

Any element in F1�κ of length n� 1 can be written as a product gh with |g| � 1
and |h| � n. By the cocycle equality, we have

ωpgh, xq � ωpg, h � xqωph, xq � ωpg, ωph, xq � xqωph, xq .
By statement 1n, we know that the map x ÞÑ ωpg, xq only depends on the
coordinates xi, i P Cp1q, and that the map x ÞÑ ωph, xq only depends on on the
coordinates xi, i P Cpnq. So, x ÞÑ ωpgh, xq only depends on the coordinates xi,
i P Cpnq, and the map

x ÞÑ pωph, xq � xqxbyk � rpωph, xqq � xxbykωph,xq for |k| ¤ 1 .

Again by statement 1n these maps only depend on the coordinates xi, i P Cpn�1q,
so that statement 1n�1 is proven.

Define, for i � 0, . . . , κ� 1 and ε � �1,

J i,ε
n :�  

g P F1�κ
�� |g| � n and |bεi g| � n� 1

(
.

It follows that
Jn�1 � Jn Y

¤
iPt0,...,κ�1u,εPt�1u

bεi J i,ε
n .

Since we assumed that statement 2n holds, in order to prove statement 2n�1, it
suffices to show that

tx ÞÑ ρpbεi g � xq | i � 0, . . . , κ� 1, ε � �1, g P J i,ε
n u

is a family of independent random variables that only depend on the coordinates
xi, i P Cpn� 1q, and that are independent of the coordinates xi, i P Cpnq.
Note that ρpbig � xq � α�1

i�1pρpb � θipg � xqqq while ρpb�1
i g � xq � α�1

i pρpb�1 �
θi�1pg � xqqq. The value of ρpb � θipg � xqq at 0 is constantly equal to i� 1, while
the value of ρpb�1 � θi�1pg � xqq at 0 is constantly equal to i. Therefore we have
to prove that

tx ÞÑ ρpb � θipg � xqqm | i � 0, . . . , κ� 1, g P J i,�
n ,m P Z� t0uu

Y tx ÞÑ ρpb�1 � θi�1pg � xqqm | i � 0, . . . , κ� 1, g P J i,�
n ,m P Z� t0uu (3.7)
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is a family of independent random variables that only depend on the coordinates
xi, i P Cpn� 1q, and that are independent of the coordinates xi, i P Cpnq.
Write

ωεi pg, xq :�
#
b ϕipg � xqωpg, xq if ε � 1,
b�1 ϕi�1pg � xqωpg, xq if ε � �1.

The random variables in (3.7) are precisely equal to

tx ÞÑ rpωεi pg, xqq � xxbyamωεi pg,xq |

i � 0, . . . , κ� 1, ε � �1, g P J i,ε
n ,m P Z� t0uu . (3.8)

So we have to prove that (3.8) is a family of independent random variables that
only depend on the coordinates xi, i P Cpn� 1q, and that are independent of
the coordinates xi, i P Cpnq. By statement 1n, the maps x ÞÑ ωεi pg, xq, and in
particular x ÞÑ rpωεi pg, xqq, only depend on the coordinates xi, i P Cpnq. So, we
have to prove that

tx ÞÑ xxbyamωε
i
pg,xq | i � 0, . . . , κ� 1, ε � �1, g P J i,ε

n ,m P Z� t0uu . (3.9)

is a family of independent random variables that only depend on the coordinates
xi, i P Cpn� 1q, and that are independent of the coordinates xi, i P Cpnq.
We apply Lemma 3.3.4 to the countable set Cpn � 1q � Cpnq and the direct
product

X
Cpnq
0 �X

Cpn�1q�Cpnq
0 .

Since the maps x ÞÑ ωεi pg, xq only depend on the coordinates xi, i P Cpnq, it
remains to check that the cosets xbyamωεi pg, xq belong to Cpn� 1q � Cpnq and
that they are distinct for fixed x PW0 and varying i P t0, . . . , κ� 1u, ε P t�1u
and g P J i,ε

n .

Note that ωpbεi g, xq P xayωεi pg, xq. Hence,

|ωεi pg, xq| � |ωpbεi g, xq| � |bεi g| � n� 1

because g P J i,ε
n . Since |ωpg, xq| � n and |ωεi pg, xq| � n� 1, it follows from the

defining formula of ωεi that the first letter of ωεi pg, xq must be bε. So the first
letter of amωεi pg, xq, m � 0, is a�1. This implies that xbyamωεi pg, xq belongs to
Cpn� 1q � Cpnq. It also follows that if

xbyamωεi pg, xq � xbyam1

ωε
1

i1 pg1, xq ,
then we must have m � m1, ε � ε1 and ωεi pg, xq � ωε

1

i1 pg1, xq. Assume ε � ε1 � 1,
the other case being analogous. So,

ϕipg � xqωpg, xq � ϕi1pg1, xqωpg1, xq .
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Applying these elements to x, it follows that θipg � xq � θi1pg1 � xq. Since the
ranges of θi and θi1 are disjoint for i � i1, it follows that i � i1. So, g �x � g1 �x.
Since we have seen above that the action F1�κ

�
ñ W0 is essentially free, it

follows that g � g1.

We have proven that (3.8) is a family of independent random variables that
only depend on the coordinates xi, i P Cpn� 1q, and that are independent of
the coordinates xi, i P Cpnq. So, statement 2n�1 holds.

To conclude the proof of the lemma, it remains to show that the random
variables x ÞÑ ρpg � xq, g P F1�κ, generate up to null sets the whole σ-algebra
of W0. Denote by B0 the σ-algebra on W0 generated by these random variables.
By construction, x ÞÑ g �x is B0-measurable for every g P F1�κ. Since x ÞÑ ρpxq
is B0-measurable, the formula

qpan � xq � aη
1pn,ρpxqq � x

shows that x ÞÑ qpan � xq is B0-measurable for every n P Z. Denote by B1 the
smallest σ-algebra on X containing B0, containing the subsets W0, . . . ,Wκ�1 �
X and making q : X ÑW0 a B1-measurable map. Note that the restriction of
B1 to W0 equals B0 and that U � X is B1-measurable if and only if qpU XWiq
is B0-measurable for every i � 0, . . . , κ� 1. It therefore suffices to prove that B1
is the whole σ-algebra of X. By construction, ρ : X Ñ Z is B1-measurable and
by the above, also x ÞÑ an � x is B1-measurable for every n P Z. If x P Wi, we
have that b � x � θ�1

i�1pbi � θipxqq and it follows that x ÞÑ b � x is B1-measurable.
Hence, x ÞÑ g � x is B1-measurable for every g P F2. Since ρ is B1-measurable, it
follows that x ÞÑ xxbyg is B1-measurable for every g P F2. Hence B1 is the entire
product σ-algebra.

Proof of Lemma 3.4.3

Proof of Lemma 3.4.3. We denote by a dot � the action of Γ on X. Let X1 � X

be a subset of measure 1{κ. We are given a p.m.p. action Λ �
ñ X1 such that

Λ � x � Γ � x XX1 for a.e. x P X1 and such that Λ ñ X1 is isomorphic with
a Λ-Bernoulli action. This means that we have a probability space U and a
factor map π : X1 Ñ U such that the random variables tx ÞÑ πpλ � xq | λ P Λu
are independent, identically distributed and generating the Borel σ-algebra of
X1. Denote by ω : Λ�X1 Ñ Γ the 1-cocycle determined by ωpλ, xq � x � λ � x
for all λ P Λ and a.e. x P X1. Put Y � Y Γ

0 and define the action Λ ñ X1 � Y
given by

λ � px, yq � ωpλ, xq � px, yq � pλ � x, ωpλ, xq � yq .
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By construction, Λ � px, yq � Γ � px, yqXX1�Y . But also the converse inclusion
holds. Indeed, if we have γ P Γ, x P X1 and y P Y such that γ � x P X1, we can
take λ P Λ such that λ�x � γ �x. Hence ωpλ, xq � γ and also γ �px, yq � λ�px, yq.
It remains to prove that Λ ñ X1 � Y is isomorphic with a Λ-Bernoulli action.

By ergodicity of Γ ñ X, choose a partition (up to measure zero) X � X1 \
� � � \Xκ with µpXiq � 1{κ and choose measurable maps ϕi : X1 Ñ Γ such that
the formulae θipxq � ϕipxq � x define measure space isomorphisms θi : X1 Ñ Xi.
Take ϕ1pxq � e for all x P X1. Define the measurable map

ρ : X1 � Y Ñ U � Y κ0 : ρpx, yq � pπpxq, yϕ1pxq, . . . , yϕκpxqq .
We prove that ρ is measure preserving and that the random variables tpx, yq ÞÑ
ρpλ � px, yqq | λ P Λu are independent, identically distributed and generating the
Borel σ-algebra of X1 � Y .

We first claim that for a.e. x P X1

F :�
�
ϕipλ � xqωpλ, xq

	
λPΛ and i�1,...,κ

(3.10)

is an enumeration of Γ without repetitions. Observe that

ϕipλ � xqωpλ, xq � x � θipλ � xq .
It follows that F � x � Γ � x. Since Γ ñ X is essentially free, it follows that F
enumerates the whole of Γ. If ϕipλ � xqωpλ, xq � ϕjpλ1 � xqωpλ1, xq, it follows
that θipλ � xq � θjpλ1 � xq. For i � j, the sets Xi and Xj are disjoint. So, i � j

and λ � x � λ1 � x. Being a Bernoulli action of an infinite group, Λ �
ñ X1 is

essentially free and we conclude that λ � λ1. This proves the claim.

Since for a.e. x P X1 the elements ϕ1pxq, . . . , ϕκpxq are distinct, it follows from
Lemma 3.3.4 that the random variables px, yq ÞÑ πpxq and px, yq ÞÑ yϕipxq,
i � 1, . . . , κ, are all independent. Since they are all measure preserving as well,
we conclude that ρ is measure preserving. Note that

ρpλ � px, yqq � �
πpλ � xq, yϕ1pλ�xqωpλ,xq, . . . , yϕκpλ�xqωpλ,xq

�
.

It therefore remains to prove that

tpx, yq ÞÑ πpλ � xq | λ P Λu Y tpx, yq ÞÑ yϕipλ�xqωpλ,xq | λ P Λ, i � 1, . . . , κu
is an independent family of random variables that generate, up to null sets, the
Borel σ-algebra of X1 � Y . The factor map π was chosen in such a way that
the random variables tx ÞÑ πpλ � xq | λ P Λu are independent and generate, up
to null sets, the Borel σ-algebra of X1. So, we must prove that

tpx, yq ÞÑ yϕipλ�xqωpλ,xq | λ P Λ, i � 1, . . . , κu (3.11)
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forms a family of independent random variables that are independent of px, yq ÞÑ
x and that, together with px, yq ÞÑ x, generate up to null sets the Borel σ-algebra
of X1 � Y . We apply Lemma 3.3.4 to the countable set Γ, the direct product
X1 � Y Γ

0 and the family of maps X1 Ñ Γ : x ÞÑ ϕipλ � xqωpλ, xq indexed by
λ P Λ, i � 1, . . . , κ. Since for a.e. x P X1, the set F in (3.10) is an enumeration
of Γ, it follows from Lemma 3.3.4 that (3.11) is indeed a family of independent
random variables that are moreover independent of px, yq ÞÑ x.

Denote by B1 the smallest σ-algebra on X1 � Y such that the map px, yq ÞÑ x
and the random variables in (3.11) are measurable. It remains to prove that,
up to null sets, B1 is the Borel σ-algebra of X1 � Y . So, it remains to prove
that for all g P Γ, the random variables px, yq ÞÑ yg are B1-measurable. Put
J � t1, . . . , κu � Λ and define the Borel map η : J � X1 Ñ Γ given by
ηpi, λ, xq :� ϕipλ � xqωpλ, xq. Since for a.e. x P X1, the family F in (3.10) is
an enumeration of Γ, we can take a Borel map γ : Γ � X1 Ñ J such that
ηpγpg, xq, xq � g for all g P Γ and a.e. x P X1. By the definition of B1 and η,
we know that the map

J �X1 � Y Ñ Y0 : pj, x, yq ÞÑ yηpj,xq (3.12)

is B1-measurable. Fix g P Γ. Since px, yq ÞÑ x is B1-measurable, also px, yq ÞÑ
pγpg, xq, x, yq is B1-measurable. The composition with the map in (3.12) yields
px, yq ÞÑ yg a.e. So px, yq ÞÑ yg is B1-measurable. This concludes the proof of
the lemma.

3.5 Isomorphisms of factors of Bernoulli actions of
free products

Before proving Theorem 3.B, we need the following elementary lemma.

Lemma 3.5.1. Let Γ,Λ be countable groups and K a nontrivial second countable
compact group equipped with its normalized Haar measure. Consider the action
pΓ�Λq�K ñ X :� KΓzΓ�Λ where Γ�Λ shifts the indices and K acts by diagonal
left translation. The resulting factor action Γ � Λ ñ X{K is isomorphic with
the co-induced action of Λ ñ KΛ{K to Γ � Λ.

Proof. Define the factor map ρ : KΓzΓ�Λ Ñ KΛ given by ρpxqλ � xΓλ. Note
that ρ is pΛ � Kq-equivariant. Denote X :� KΓzΓ�Λ and denote by x ÞÑ x
the factor map of X onto X{K. So we get the Λ-equivariant factor map
ρ : X{K Ñ KΛ{K : ρpxq � ρpxq. We prove that Γ � Λ ñ X{K together with ρ
satisfies the abstract characterization of the co-induced action of Λ ñ KΛ{K
to Γ � Λ.
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For g P Γ � Λ, denote by |g| the number of letters from Γ� teu appearing in a
reduced expression for g. Define the subsets In � Γ � Λ given by I0 :� teu and

In :�  
g P Γ � Λ

�� |g| � n and the reduced

expression of g starts with a letter from Γ� teu ( .
Note that

�8
n�0 In is a right transversal for Λ   Γ � Λ. So we have to prove

that
tx ÞÑ ρpg � xq | n P N, g P Inu (3.13)

is a family of independent random variables that generate, up to null sets, the
whole σ-algebra of X{K.

For i P ΓzΓ � Λ, we write |i| � n if i � Γg, where |g| � n and the reduced
expression for g starts with a letter from Λ� teu. For every λ P Λ� teu, define
θλ : KΛ{K Ñ K : θλpxq � x�1

e xλ. Observe that for all g P In and λ P Λ� teu,
we have

θλpρpg � xqq � x�1
Γg xΓλg . (3.14)

Since g P In starts with a letter from Γ� teu, we have |Γλg| � |g| � n, while
|Γg| � n� 1. Write In :� ti P ΓzΓ � Λ | |i| ¤ nu. We apply Lemma 3.3.4 to the
countable set In � In�1, the direct product

Z :� KIn�1 �KIn�In�1

and the family of maps ωg,λ : Z Ñ K�pIn�In�1q, indexed by g P In, λ P Λ�teu,
only depending on the coordinates xi, i P In�1, and given by

ωg,λ : x ÞÑ px�1
Γg ,Γλgq .

Since the elements Γλg, for g P In, λ P Λ� teu, enumerate In � In�1, it follows
from Lemma 3.3.4 that the random variables

tX Ñ K : x ÞÑ x�1
Γg xΓλg | g P In, λ P Λ� teu u

are independent, only depend on the coordinates xi, |i| ¤ n, and are independent
of the coordinates xi, |i| ¤ n� 1. In combination with (3.14), it follows that
(3.13) is indeed a family of independent random variables.

Denote by B0 the smallest σ-algebra on X{K for which all the functions
x ÞÑ ρpg � xq, g P Γ � Λ, are B0-measurable. Formula (3.14) and an induction
on n show that x ÞÑ x�1

Γe xi is B0-measurable for every i P ΓzΓ � Λ with |i| ¤ n.
Hence, B0 is the entire σ-algebra on X{K.

Theorem 3.B will be an immediate corollary of the following general result.
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Theorem 3.5.2. Let Γi, i � 0, 1, be countable groups and K a nontrivial
second countable compact group equipped with its normalized Haar measure.
Assume that Γi ñ KΓi{K is isomorphic with the Bernoulli action Γi ñ Y Γi

i

with base space pYi, µiq. Write G :� Γ0 � Γ1. Then Gñ KG{K is isomorphic
with the Bernoulli action Gñ pY0 � Y1qG with base space Y0 � Y1.

Proof. Put A :� KΓ0 and denote by α the action Γ0 �K
α
ñ A where Γ0 shifts

the indices and K acts by diagonal left translation. Put B :� Y Γ0
0 �K and

denote by β the action Γ0 �K
β
ñ B where Γ0 only acts on the factor Y Γ0

0 in a
Bernoulli way and K only acts on the factor K by translation. Our assumptions
say that Γ0 ñ A{K and Γ0 ñ B{K are isomorphic actions. We apply Theorem
3.3.2 to these two actions of Γ0.

So denote G � Γ0 � Γ1 and denote by G ñ Ã, resp. G ñ B̃, the co-induced
actions of Γ0 ñ A, resp. Γ0 ñ B, to G. Note that these actions come together
with natural actions K ñ Ã and K ñ B̃ that commute with G-actions. By
Theorem 3.3.2, the actions Gñ Ã{K and Gñ B̃{K are isomorphic.

We now identify the actions G�K ñ Ã and G�K ñ B̃ with the following
known actions. First, the action G �K ñ Ã is canonically isomorphic with
G �K ñ KG where G acts in a Bernoulli way and K acts by diagonal left
translation. Secondly, using Remark 3.3.1.3, the action G�K ñ B̃ is isomorphic
with the action G�K ñ Y G0 �KΓ0zG where G acts diagonally in a Bernoulli
way and K only acts on the second factor by diagonal left translation. In
combination with the previous paragraph, it follows that the action Gñ KG{K
is isomorphic with the diagonal action Gñ Y G0 � pKΓ0zGq{K.

From Lemma 3.5.1, we know that G ñ pKΓ0zGq{K is isomorphic with the
co-induced action of Γ1 ñ KΓ1{K to G. Since we assumed that Γ1 ñ KΓ1{K is
isomorphic with the Bernoulli action Γ1 ñ Y Γ1

1 , it follows that Gñ pKΓ0zGq{K
is isomorphic with the Bernoulli action G ñ Y G1 . In combination with the
previous paragraph, it follows that Gñ KG{K is isomorphic with the Bernoulli
action Gñ pY0 � Y1qG.

Proof of Theorem 3.B

Proof of Theorem 3.B. Since the action Λi ñ KΛi{K arises as the factor of a
Bernoulli action and Λi is amenable, it follows from [152] that Λi ñ KΛi{K is
isomorphic with a Bernoulli action Λi ñ Y Λi

i . Repeatedly applying Theorem
3.5.2, it follows that Γ ñ KΓ{K is isomorphic with the Bernoulli action
Γ ñ pY1 � � � � � YnqΓ.
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The special case Γ � Fn is a very easy generalization of [152, Appendix C.(b)].
Denote by x ÞÑ x the quotient map from KFn to KFn{K. Denote by a1, . . . , an
the free generators of Fn. Define the measurable map

θ : KFn{K Ñ pK � � � � �KqFn : θpxqg � px�1
g xa1g, . . . , x

�1
g xangq .

We shall prove that θ is an isomorphism between Fn ñ KFn{K and Fn ñ

pK�� � ��KqFn . First note that θ is indeed Fn-equivariant. It remains to prove
that

tx ÞÑ x�1
g xaig | i � 1, . . . , n , g P Fnu (3.15)

is a family of independent random variables on KFn{K that generate up to null
sets the whole σ-algebra of KFn{K. Denote by |g| the word length of an element
g P Fn. Define for i P t1, . . . , nu, ε � �1 and k P N, the subsets Ii,εk � Fn given
by

Ii,εk :�  
g P Fn

�� |g| � k , |aεi g| � k � 1
(
.

If |g| � k and |aig| � k � 1, we compose the random variable x ÞÑ x�1
g xaig by

the map K Ñ K : y ÞÑ y�1 and observe that aig P Ii,�1
k�1 . So we need to prove

that

tx ÞÑ x�1
g xaε

i
g | i � 1, . . . , n , ε � �1 , k P N , g P Ii,εk u (3.16)

is a family of independent random variables that generate up to null sets the
whole σ-algebra of KFn{K.

Write Ik � tg P Fn | |g| ¤ ku and fix k P N. We apply Lemma 3.3.4 to the
countable set Ik�1 � Ik, the direct product

Z :� KIk �KIk�1�Ik

and the family of maps ωi,ε,g : Z Ñ K � pIk�1 � Ikq indexed by the set

F :� tpi, ε, gq | i � 1, . . . , n , ε � �1 , g P Ii,εk u ,
only depending on the coordinates xi, i P Ik, and given by

ωi,ε,g : x ÞÑ px�1
g , aεi gq .

Since the elements aεi g with pi, ε, gq P F enumerate Ik�1 � Ik, it follows from
Lemma 3.3.4 that tx ÞÑ x�1

g xaε
i
g | i � 1, . . . , n , ε � �1 , g P Ii,εk u is a family

of independent random variables that are independent of the coordinates xh,
|h| ¤ k. By construction, these random variables only depend on the coordinates
xh, |h| ¤ k � 1. This being proven for all k P N, it follows that (3.16) is a
family of independent random variables. Hence the same is true for (3.15).
These random variables can be easily seen to generate up to null sets the whole
σ-algebra of KFn{K.
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Appendix: essentially free actions of locally compact
groups

A p.m.p. action of a second countable locally compact group G on a standard
probability space pX,µq is an action of the group G on the set X such that
G�X Ñ X : pg, xq ÞÑ g � x is a Borel map and such that for all g P G and all
Borel sets A � X, we have µpg �Aq � µpAq.
For every x P X, we define the subgroup Stabx of G given by Stabx � tg P
G | g � x � xu. For the sake of completeness, we give a proof for the following
folklore lemma.

Lemma 3.5.3. Let Gñ pX,µq be a p.m.p. action of a second countable locally
compact group G on a standard probability space pX,µq, as above.

1. The set X0 :� tx P X | Stabx � teu u is a G-invariant Borel subset of X.

2. Assume that µpX0q � 1 and that G is compact. Denote by m the
normalized Haar measure on G. There exists a standard probability
space pY0, ηq and a bijective Borel isomorphism θ : G�Y0 Ñ X0 such that
θpgh, yq � g � θph, yq for all g, h P G, y P Y0, and such that θ�pm� ηq � µ.

A p.m.p. action Gñ pX,µq is called essentially free if the Borel set tx P X |
Stabx � teuu has measure 1.

Proof. By [220, Theorem 3.2], there exists a continuous action of G on a Polish
space Y and an injective Borel map ψ : X Ñ Y satisfying ψpg � xq � g � ψpxq
for all g P G and x P X. Since ψ is injective, ψpXq is a Borel subset of Y and
ψ is a Borel isomorphism of X onto ψpXq (see e.g. [127, Theorem 15.1]). So,
we actually view X as a G-invariant Borel subset of Y .

To prove 1, fix a sequence of compact subsets Kn � G�teu such that G�teu ��8
n�1Kn. Also fix a metric d on Y that induces the topology on Y . Define

fn : X Ñ R : fnpxq � min
gPKn

dpg � x, xq .

Whenever Fn � Kn is a countable dense subset, we have fnpxq � infgPFn dpg �
x, xq, so that fn is Borel. Since Stabx � teu if and only if fnpxq ¡ 0 for all n,
statement 1 follows.

To prove 2, assume that µpX0q � 1 and that G is compact. Since G acts
continuously on Y and G is compact, all orbits G � y are closed. By [127,
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Theorem 12.16], we can choose a Borel subset Y1 � Y such that Y1 XG � y is a
singleton for every y P Y . Define Y0 :� Y1 XX0. By construction, the map

θ : G� Y0 Ñ X0 : θpg, yq � g � y

is Borel, bijective and satisfies θpgh, yq � g � θph, yq for all g, h P G and y P Y0.
Then also θ�1 is Borel (see e.g. [127, Theorem 15.1]). The formula η0 :�
pθ�1q�pµq yields a G-invariant probability measure on G � Y0. Defining the
probability measure η on Y0 as the push forward of η0 under the quotient map
pg, yq ÞÑ y, the G-invariance of η0 together with the Fubini theorem, imply that
η0 � m� η.



Chapter 4

Tensor C�-categories arising
as bimodule categories of II1
factors

This chapter is based on our joint work with Sébastien Falguières [85]. We
prove that if C is a tensor C�-category in a certain class, then there exists
an uncountable family of pairwise non stably isomorphic II1 factors pMiq
such that the bimodule category of Mi is equivalent to C for all i. In
particular, we prove that every finite tensor C�-category is the bimodule
category of a II1 factor. As an application we prove the existence of a
II1 factor for which the set of indices of finite index irreducible subfactors
is
!

1, 5�?13
2 , 12� 3

?
13, 4�?13, 11�3

?
13

2 , 13�3
?

13
2 , 19�5

?
13

2 , 7�?13
2

)
. We also

give the first example of a II1 factor M such that BimodpMq is explicitly
calculated and has an uncountable number of isomorphism classes of irreducible
objects.

4.1 Introduction

The description of symmetries of a II1 factor M , such as the fundamental
group FpMq of Murray and von Neumann and the outer automorphism group
OutpMq, is a central and usually very hard problem in the theory of II1 factors.
Over the last ten years, Sorin Popa developed his deformation-rigidity theory
[164, 166, 167] and settled many long standing open problems in this direction.

77
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See [214, 169, 217] for a survey. In particular, he obtained the first complete
calculations of fundamental groups [164] and outer automorphism groups [117].
His methods were used in further calculations. Without being exhaustive, see
for example [166, 176, 62] concerning fundamental groups and [175, 215, 86] for
outer automorphism groups.

Bimodules MHM over a II1 factor M having finite left and right M -dimension
are said to be of finite Jones index (see [53, 160]) and they give rise to a category,
which we denote by BimodpMq. Endowed with the Connes tensor product of
M -M -bimodules, BimodpMq is a compact tensor C�-category, in the sense of
Longo and Roberts [134].

The bimodule category of a II1 factor M may be seen as a generalized symmetry
group ofM . It contains a lot of structural information onM and encodes several
other invariants of M . Indeed, if grppMq denotes the group-like elements in
BimodpMq, i.e. bimodules of index 1, one has the following short exact sequence

1 Ñ OutpMq Ñ grppMq Ñ FpMq Ñ 1 .

Finite index subfactors N � M are also encoded in a certain sense by the
bimodule category BimodpMq, since, denoting N �M �M1 the Jones basic
construction, we obtain a finite index bimodule ML2pM1qM.

As explained above, in [117] the first actual computation of the outer
automorphism group of II1 factors was achieved, using a combination of relative
property (T) and amalgamated free products. Extending their methods, in [216],
Vaes proved the existence of a II1 factor M with trivial bimodule category. As
a consequence, all the symmetry groups and subfactors of M were trivial. Also
relying on Popa’s methods, in [87], Vaes and the first author proved that the
representation category of any compact second countable group can be realized
as the bimodule category of a II1 factor. More precisely, given a compact second
countable group G, there exists a II1 factor M and a minimal action GñM
such that, denoting MG the fixed point II1 factor, the natural fully faithful
tensor functor ReppGq Ñ BimodpMGq is an equivalence of tensor C�-categories.
Both papers followed closely [117] and thus, they give only existence results.

Explicit results on the calculation of bimodule categories are obtained in [215]
and [64]. Both articles are based on generalizations of Popa’s seminal papers
[164, 166] on Bernoulli crossed products. In [215], Vaes gave explicit examples of
group-measure space II1 factorsM for which the fusion algebra, i.e. isomorphism
classes of finite index bimodules and fusion rules, were calculated. The complete
calculation of the category of bimodules over II1 factors coming from [215] was
obtained by Deprez and Vaes in [64]. Even more is proven in [64], since the
C�-bicategory of II1 factors commensurable with M , i.e. those II1 factors N
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admitting a finite index N -M -bimodule, is also computed and explicitly arises
as the bicategory associated with a Hecke pair of groups.

Note that by [67], representation categories of compact second countable groups
can be characterized abstractly as symmetric compact tensor C�-categories with
countably many isomorphism classes of irreducible objects. Among compact
tensor C�-categories, finite tensor C�-categories, i.e. those which admit only
finitely many isomorphism classes of irreducible objects, form another natural
class. We prove that every finite tensor C�-category arises as the bimodule
category of a II1 factor.
Theorem 4.A. Let C be a finite tensor C�-category. Then there is a II1 factor
M such that BimodpMq � C.

As an application of the above theorem, we prove the existence of a II1 factor
for which the set of indices of irreducible finite index subfactors can be explicitly
calculated and contains irrationals. Recall the amazing theorem of Jones,
proving that the index of an inclusion of II1 factors N �M ranges in the set

I �
"

4 cos
�π
n

	2
| n � 3, 4, 5, . . .

*
Y r4,�8s .

Given a II1 factor M , Jones defines the invariant

CpMq � tλ | there is a finite index irreducible inclusion N �M of index λu .
Jones proved that every element of I arises as the index of a not necessarily
irreducible subfactor of the hyperfinite II1 factor. However, the problem of
computing CpRq is still widely open. In [215, 216], Vaes proved the existence of
II1 factors M for which CpMq � t1u and CpMq � tn2 | n P Nu. The invariant
CpMq is also computed in [87] and arises as the set of dimensions of some
finite dimensional von Neumann algebras. In [64], Deprez and Vaes constructed
concrete group-measure space II1 factors M with CpMq ranging over all sets
of natural numbers that are closed under taking divisors and taking lowest
common multiples.

All above results provide II1 factorsM for which CpMq is a subset of the natural
numbers. However, combining recent work on tensor categories [103] and our
Theorem 4.A, we prove the following theorem.
Theorem 4.B. There exists a II1 factor M such that

CpMq �
!

1, 5�?13
2 , 12� 3

?
13, 4�

?
13,

11� 3
?

13
2 ,

13� 3
?

13
2 ,

19� 5
?

13
2 ,

7�?13
2

)
.
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In [215], [87] and [64] only categories with at most countably many isomorphism
classes of irreducible objects were obtained as bimodule categories of II1 factors.
We give examples of II1 factors M such that BimodpMq can be calculated
and has uncountably many pairwise non isomorphic irreducible objects. For
example, if G is a countable, discrete group, we prove the existence of a II1
factor M such that BimodpMq � URepfinpGq. Here, URepfinpGq denotes the
category of finite dimensional representations of G.

Theorem 4.C. Let C denote one of the following compact tensor C�-categories.
Either C � URepfinpGq for a countable discrete group, or C � UCorepfinpAq
for an amenable or a maximally almost periodic discrete Kac algebra A. Then,
there is a II1 factor M such that BimodpMq � C.

Our construction consists of two main steps.

1. Given any quasi-regular, depth 2 inclusion N � Q of II1 factors, such
that N and N 1 X Q are hyperfinite, denote by N � Q � Q1 the Jones
basic construction. We construct a II1 factor M and a fully faithful tensor
C�-functor F : BimodpQ � Q1q Ñ BimodpMq (see Section 4.2.4 for the
bimodule category associated with an inclusion of II1 factors).

2. Using Ioana, Peterson and Popa’s rigidity results for amalgamated free
product von Neumann algebras [117], we prove that under suitable
assumptions (see Theorem 4.3.1) the functor F is essentially surjective.

The above steps yield a II1 factor M such that BimodpMq � BimodpQ � Q1q.
Using the setting of [117], as in [86, 87, 216], this result is not constructive. We
only prove an existence theorem, which involves a Baire category argument
(see Theorem 4.2.19). More precisely, we prove the following Theorem 4.D and
Theorems 4.A and 4.C are obtained as corollaries.

Theorem 4.D. Let N � Q be a quasi-regular and depth 2 inclusion of II1
factors. Assume that N and N 1 X Q are hyperfinite and denote by N �
Q � Q1 the basic construction. Then, there exist uncountably many pairwise
non-stably isomorphic II1 factors pMiq such that for all i we have BimodpMiq �
BimodpQ � Q1q as tensor C�-categories.

4.2 Preliminaries and notations

In this chapter, von Neumann algebras are assumed to act on a separable Hilbert
space. A von Neumann algebra pM, τq endowed with a faithful normal tracial
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state τ is called a tracial von Neumann algebra. We define L2pMq as the GNS
Hilbert space with respect to τ .

WheneverM is a von Neumann algebra, we writeMn � MnpCqbM andM8 �
Bp 2̀pNqqbM . Whenever H is a Hilbert space, we also denote H8 � 2̀pNq bH.

If B � M is a tracial inclusion of von Neumann algebras, then we denote
by EB the trace preserving conditional expectation of M onto B. Also if
pBnp � pMnp is an amplification of B �M , we still denote by EB the trace
preserving conditional expectation onto pBnp.

4.2.1 Finite index bimodules

Let M , N be tracial von Neumann algebras. An M -N -bimodule MHN is a
Hilbert space H equipped with a normal representation of M and a normal
anti-representation of N that commute. Bimodules over von Neumann algebras
were studied in [53, V.Appendix B] and [160].

Let H be an M -N -bimodule. There exists a projection p P N8 such that

HN � �
pL2pNq8�

N
,

and this projection p is uniquely defined up to equivalence of projections in
N8. There also exists a �-homomorphism ψ : M Ñ pN8p such that MHN is
isomorphic with the M -N -bimodule Hpψq defined as Hilbert space pL2pNq8
and endowed with actions given by

a � ξ � ψpaqξ and ξ � b � ξb and a PM , b P N , ξ P pL2pNq8 .

Furthermore, if ψ : M Ñ pN8p and η : M Ñ qN8q, then MHpψqN � MHpηqN
if and only if there exists u P N8 satisfying uu� � p, u�u � q and ψpaq �
uηpaqu� for all a PM .

Note thatM -N -bimodules MHN can also be described by means of right actions
of �-homomorphisms ψ : N Ñ pM8p as

MHN � M

�p`2pNq� b L2pMqqp�ψpNq .
Let H be a right N -module and write HN � �

pL2pNq8�
N
, for a projection

p P N8. Denote dim -N pHq � pTrbτqppq. Observe that the number dim -N pHq
depends on the choice of the trace τ , if N is not a factor.

An M -N -bimodule MHN is said to be of finite Jones index if dimM-pHq   �8
and dim -N pHq   �8. In particular, the Jones index of a subfactor N � M
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is defined as rM : N s � dim -N pL2pMqq, see [125]. Using the above notations,
consider a bimodule of the form MHpψqN with finite Jones index. Then, one
may assume that ψ is a finite index inclusion ψ : M Ñ pNnp.

4.2.2 Popa’s intertwining-by-bimodules technique

In [166, Section 2], Popa introduced a very powerful technique to deduce unitary
conjugacy of two von Neumann subalgebras A and B of a tracial von Neumann
algebra M from their embedding A  M B, using interwining bimodules. When
A,B �M are Cartan subalgebras of a II1 factorM , Popa proves [164, Theorem
A.1] that A  M B if and only if A and B are actually conjugated by a unitary
in M . We also recall the notion of full embedding A  fM B of A into B inside
M .

Definition 4.2.1. LetM be a tracial von Neumann and A,B �Mn be possibly
non-unital subalgebras. We write

• A  M B if 1A L2pMnq1B contains a non-zero A-B-subbimodule K that
satisfies dim -BpKq   8.

• A  fM B if Ap  M B for every non-zero projection p P 1AMn1A XA1.

We will use the following characterization of embedding of subalgebras. It can
be found in [166, Theorem 2.1 and Corollary 2.3] (see also Appendix F in [44]).

Theorem 4.2.2 (See [166]). Let M be a tracial von Neumann algebra and
A,B �Mn possibly non-unital subalgebras. The following are equivalent.

• A  M B,

• there exist m P N, a �-homomorphism ψ : A Ñ pBmp and a non-zero
partial isometry v P 1A

�
M1,mpCq bMn

�
p satisfying av � vψpaq for all

a P A,
• there is no sequence of unitaries uk P UpAq such that }EBpxukyq}2 Ñ 0

for all x, y PMn.

Note that the entries of v as in in the previous theorem span an A-B-bimodule
K � L2pMnq such that dim -BpKq   8.

We will make use of Theorem 4.2.4 due to Vaes, [215, Theorem 3.11]. We
first recall the notion of essentially finite index inclusions of II1 factors (see
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[215, Proposition A.2]) and embedding of von Neumann subalgebras inside a
bimodule.

Let N � M be an inclusion of tracial von Neumann algebras. We say that
N � M has essentially finite index if there exists a sequence of projections
pn P N 1 XM such that pn tends to 1 strongly and Npn � pnMpn has finite
Jones index for all n.

Definition 4.2.3. Let M,N be tracial von Neumann algebras and A � M ,
B � N von Neumann subalgebras. Let MHN be an M -N -bimodule. We write

• A  H B if H contains a non-zero A-B-subbimodule K � H with
dim -BpKq   8.

• A  fH B if every non-zero A-N -subbimodule K � H satisfies A  K B.

Denote by τ the trace onM . Let H be anM -N -bimodule. Using notations from
Section 4.2.1, write H � Hpψq where ψ is a �-homomorphism ψ : M Ñ pN8p
and p a projection in N8. Suppose that dim -N pHq   �8, i.e pTrbτqppq   �8.
Then, as remarked in [215], one has

• A  H B if and only if ψpAq  N B,

• A  fH B if and only if ψpAq  fN B.

Theorem 4.2.4 ([215, Theorem 3.11]). Let N,M be tracial von Neumann
algebras, with trace τ . Let A � M , B � N be von Neumann subalgebras.
Assume the following.

• Every A-A-subbimodule K � L2pMq satisfying dim -ApKq   �8 is
included in L2pAq.

• Every B-B-subbimodule K � L2pNq satisfying dim -BpKq   �8 is
included in L2pBq.

Suppose that MHN is a finite index M-N-bimodule such that A  
f
H B and

A ¡fH B. Then there exists a projection p P B8 satisfying pTrbτqppq   �8
and a �-homomorphism ψ : M Ñ pN8p such that

MHN � MHpψqN , ψpAq � pB8

and this last inclusion has essentially finite index.
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4.2.3 Amalgamated free products of tracial von Neumann
algebras

Throughout this section we consider von Neumann algebras M0,M1 endowed
with faithful normal tracial states τ0, τ1. Let N be a common von Neumann
subalgebra of M0 and M1 such that the traces τ0 and τ1 coincide on N . We
denoteM �M0�NM1 the amalgamated free product ofM0 andM1 over N with
respect to the trace preserving conditional expectations (see [162] and [226]).
Recall that M is endowed with a conditional expectation E : M Ñ N and
the pair pM,Eq is unique up to E-preserving isomorphism. The von Neumann
algebra M0 �N M1 is equipped with a trace defined by τ � τ0 � E � τ1 � E.

Rigid subalgebras

Kazhdan’s property (T) was generalized to tracial von Neumann algebras by
Connes and Jones in [56] and is defined as follows. A II1 factor M has property
(T) if and only if there exists ε ¡ 0 and a finite subset F �M such that every
M -M -bimodule that has a unit vector ξ satisfying }xξ � ξx} ¤ ε, for all x P F ,
actually has a non-zero vector ξ0 satisfying xξ0 � ξ0x, for all x PM .

Note that a group Γ such that every non-trivial conjugacy class is infinite (ICC
group) has property (T) in the sense of Kazhdan if and only if the II1 factor
LpΓq has property (T) in the sense of Connes and Jones.

Popa defined a notion of relative property (T) for inclusions of tracial von
Neumann algebras, see [164, Definition 4.2]. Such an inclusion is also called
rigid. In particular, if N is a II1 factor having property (T), then any inclusion
N �M in a finite von Neumann algebra M is rigid.

We will make use of the following characterization of relative property (T).

Theorem 4.2.5 (See [164] and [157]). An inclusion N � M of tracial von
Neumann algebras is rigid if and only if every sequence pψnq of trace preserving,
completely positive, unital maps ψn : M Ñ M converging to the identity
pointwise in } }2, converges uniformly in } }2 on the unital ball pNq1 of N .

We recall Ioana, Peterson and Popa’s Theorem 5.1 from [117] which controls
the position of rigid subalgebras of amalgamated free product von Neumann
algebras. We choose to work with matrices over amalgamated free products,
which is not a more general situation, since pM0 �N M1qn can be identified with
Mn

0 �Nn Mn
1 .
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Theorem 4.2.6 (See [117, Theorem 4.3]). Let M � M0 �N M1. Let p P Mn

be a projection and Q � pMnp a rigid inclusion. Then there exists i P t0, 1u
such that Q  M Mi.

Control of quasi-normalizers

LetM be a tracial von Neumann algebra andN �M a von Neumann subalgebra.
The quasi-normalizer of N inside M , denoted QNM pNq, is defined as the set
of elements a PM for which there exist a1, . . . , an, b1, . . . , bm PM such that

Na �
ņ

i�1
aiN, , aN �

m̧

i�1
Nbi .

The inclusion N � M is called quasi-regular if QNM pNq2 � M . One also
defines the group of normalizing unitaries NN pMq of N � M as the set of
unitaries u PM satisfying uNu� � N . The normalizer of N in M is NM pNq2.
Note that N 1 XM � NM pNq2 � QNM pNq2.
Theorem 4.2.7 (See [117, Theorem 1.1]). Let M � M0 �N M1. Let p P Mn

0
be a projection and Q � pMn

0 p a von Neumann subalgebra satisfying Q ¢M0 N .
Whenever K � ppCn b L2pMqq is a Q-M0-subbimodule with dim -M0pKq   �8,
we have K � ppCn b L2pM0qq. In particular, the quasi-normalizer of Q inside
pMnp is contained in pMn

0 p.

4.2.4 Tensor C�-categories, fusion algebras and bimodule
categories of II1 factors

We briefly recall some definitions for tensor C�-categories and refer to [134,
189] for more information and precise statements. A tensor C�-category is a
C�-category with a monoidal structure, such that all structure maps are unitary.
A tensor C�-category is called regular if it has subobjects and direct sums and
the unit object is strongly irreducible. A regular tensor C�-category is called
compact if every object has a conjugate. A compact tensor C�-category is finite
if it has only finitely many isomorphism classes of simple objects.

Convention. Throughout this chapter we assume without loss of generality
that all tensor categories involved are strict.

Fusion algebras

A fusion algebra A is a free N-module NrGs equipped with
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• an associative and distributive product operation, and a multiplicative
unit element e P G,

• an additive, anti-multiplicative, involutive map x ÞÑ x, called conjugation,

satisfying Frobenius reciprocity as follows. For x, y, z P G, define mpx, y; zq P N
such that

xy �
¸
z

mpx, y; zqz .

Then, one has mpx, y; zq � mpx, z; yq � mpz, y;xq for all x, y, z P G.

The base G of the fusion algebra A, also called the irreducible elements of A,
consists of the non-zero elements of A that cannot be expressed as the sum of
two non-zero elements.

We have the following examples of fusion algebras.

• Given a countable group Γ, one gets the associated fusion algebra A �
NrΓs.

• Let G be a locally compact group and define the fusion algebra A of
URepfinpGq as the set of equivalence classes of finite dimensional unitary
representations of G. The direct sum and tensor product of representations
in URepfinpGq yield a fusion algebra structure on A.

• More generally, the isomorphism classes of objects in a compact tensor
C�-category form a fusion algebra. Note that there exist non-equivalent
tensor C�-categories having isomorphic fusion algebras.

We are mainly interested in tensor C�-categories and fusion algebras coming
from bimodules over II1 factors. Let us recall some definitions and refer to
[36] for background material and results on bimodules and fusion algebras, in
particular in relation with subfactors.

The bimodule category of a II1 factor

Let M , N , P be II1 factors. We denote by HbN K the Connes tensor product
of the M -N -bimodule H and the N -P -bimodule K and refer to [53, V.Appendix
B] for details. Note that Hpρq bN Hpψq � Hppidb ψqρq.
We recall now the following useful lemma from [87] concerning Connes tensor
product versus product in a given module. The inclusion of II1 factors N �M
considered in [87] is assumed to be irreducible (N 1 XM � C1). Instead, we
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assume that N � M is quasi-regular. We give a proof for the convenience of
the reader.

Lemma 4.2.8 ([87, Lemma 2.2]). Let rN � N � M be an inclusion of II1
factors and let P be a II1 factor. Assume that N � M is quasi-regular andrN � N has finite index. Let MHP be an M-P -bimodule. Suppose that L � H
is a closed rN -P -subbimodule. Suppose that K � L2pMq is an N - rN -subbimodule
of finite index. Denote by K � L the closure of pK XMqL inside H. Then

• K � L is an N -P -bimodule isomorphic to a subbimodule of K b
�N

L.

• If K � L is non-zero and K b
�N

L is irreducible then, K � L and K b
�N

L
are isomorphic N -P -bimodules.

Whenever PHM is a P -M-bimodule with closed P - rN-subbimodule L and K �
L2pMq an rN -N -subbimodule, we define L �K as the closure of LpKXMq inside
H and, by symmetry, we find that L �K is isomorphic with a P -N -subbimodule
of LbN K.

Proof. Let H,K and L be as in the statement of the lemma. Note that K XM
is dense in K, since N � M is quasi-regular and rN � N has finite index.
Moreover, all vectors in K X M are rN -bounded. So, there exists a finite
index inclusion ψ : N Ñ p rNnp and an N - rN -bimodular isomorphism T :
Hpψq � ppCn b L2p rNqq Ñ K such that T pppei b 1qq P K XM for all i. We
have K b

�N
L � ppCn b Lq, hence we can define an N -P -bimodular map

S : ppCn b Lq Ñ K � L by Spppei b ξqq � T pppei b 1qq � ξ. The range of T is
dense in K � L. After taking the polar decomposition of T we get a coisometry
K bN L Ñ K � L.

The contragredient of an M -N -bimodule MHN is the N -M -bimodule defined
on the conjugate Hilbert space H with bimodule actions given by a � ξ � pξa�q
and ξ � b � pb�ξq.
The Connes tensor product and contragredience induce a compact tensor
C�-category structure on the category of finite index M -M bimodules, where
morphisms are given by bimodular maps.

Definition 4.2.9. Let M be a II1 factor. We define BimodpMq to be the
tensor C�-category of finite index M -M -bimodules and FalgpMq the associated
fusion algebra.

We recall the notion of pairs of conjugates in strict tensor C�-categories.
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Definition 4.2.10 (See [134]). Let x be an object in a strict tensor C�-category
C. A conjugate for x is an object x in C and morphisms R : 1C Ñ x b x,
R : 1C Ñ xb x such that

pR� b idxq � pidx bRq � idx and pR� b idxq � pidx bRq � idx .

In the following theorem, pairs of conjugates are used to characterize finite
index bimodules among all bimodules over a II1 factor (see [134] and also [84,
Theorem 5.32]).

Theorem 4.2.11. Let M be a II1 factor and let MHM an M-M-bimodule.
Then MHM has finite index if and only if MHM has a conjugate in the tensor
C�-category of all M -M -bimodules.

Tensor C�-categories arising from subfactors

Let M be a II1 factor and N � M a subfactor. Write eN for the projection
L2pMq Ñ L2pNq. The von Neumann algebra xM, eN y � BpL2pMqq generated
by M and eN , called the Jones basic construction, was introduced in [125]
and is denoted M1. Note that L2pM1q is an M -M -bimodule and it is of finite
Jones index whenever rM : N s   �8. We will frequently use the fact that
dimpN 1 XMq   �8 if rM : N s   �8.

Definition 4.2.12. Let N �M be an inclusion of type II1 factors. We define
BimodpN �Mq to be the tensor C�-subcategory of BimodpNq generated by all
finite index N -N -bimodules that appear in L2pMq. We denote by FalgpN �Mq
the associated fusion subalgebra of BimodpN �Mq.

We give the following definition of depth 2, as in [80].

Definition 4.2.13. Let N � Q be an inclusion of II1 factors. Let N �
Q � Q1 � Q2 � � � � be the Jones tower. Then N � Q has depth 2 if
N 1 XQ � N 1 XQ1 � N 1 XQ2 is a basic construction.

Identify N 1 XQ2 with the space BN-QpL2pQ1,Trqq of bounded N -Q-bimodular
maps. Denote by HomN-QpL2pQq,L2pQ1qq the Hilbert space completion of
N -Q-bimodular maps from L2pQ, τq to L2pQ1,Trq with respect to the scalar
product xT, Sy � τpS�T q. We recall the following special case of [80, Theorem
3.10].

Theorem 4.2.14 (See [80, Theorem 3.10]). The inclusion N � Q of
II1 factors has depth 2 if and only if the natural action of N 1 X Q2 on
HomN-QpL2pQq,L2pQ1qq is faithful.
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As a consequence, we obtain the following characterization of depth 2 inclusions
that we use in this chapter.

Corollary 4.2.15. Let N,Q be II1 factors. Then, the inclusion N � Q
has depth 2 if and only if NL2pQ1qQ is isomorphic to an N-Q-subbimodule of
NL2pQq8Q.

Proof. Let N � Q be a depth 2 inclusion of II1 factors. Let p P N 1 XQ2 be the
projection onto the orthogonal complement of the maximal N -Q-subbimodule
of L2pQ1q which is contained in NL2pQq8Q. Then, p acts trivially on
HomN-QpL2pQq,L2pQ1qq. Therefore, p � 0 by Theorem 4.2.14.

Assume that NL2pQ1qQ is isomorphic to a subbimodule of NL2pQq8Q. Let
p P N 1XQ2 be a non-zero projection. Then pL2pQ1q is a non-zero N -Q-bimodule,
so there is a non-trivial N -Q-bimodular map T : L2pQq Ñ pL2pQ1q. We have
p � T � T � 0, so p acts non-trivially on HomN-QpL2pQq,L2pQ1qq. We have
proven that N 1 XQ2 acts faithfully on HomN-QpL2pQq,L2pQ1qq. We conclude
using again Theorem 4.2.14.

The fusion algebra of almost-normalizing bimodules

Let N � M be a regular inclusion, i.e. NM pNq2 � M . For any element
u P NM pNq the N -N -bimodule uL2pNq has finite index and lies in L2pMq.
Such bimodules are generalized by the notion of bimodules almost-normalizing
the inclusion N � M , which was introduced by Vaes in [216]. This notion
was adapted to more general irreducible, quasi-regular inclusions of II1 factors
N �M in [87]. We recall the definition.

Definition 4.2.16. Let N �M be an irreducible and quasi-regular inclusion
of type II1 factors. A finite index N -N -bimodule is said to almost-normalize the
inclusion N �M , inside FalgpNq, if it arises as a finite index N -N -subbimodule
of a finite index M -M -bimodule. We denote by AFalgpN � Mq the fusion
algebra generated by N -N -bimodules almost-normalizing the inclusion N �M .

Let N be a II1 factor and Γ a countable group acting outerly on N . Write
M � N � Γ and assume that the inclusion N � N � Γ is rigid. It is proven
in [216, Lemma 4.1] that the fusion algebra AFalgpN � N � Γq is a countable
fusion subalgebra of FalgpNq. The next lemma is a straightforward adaptation
of [216, Lemma 4.1].

Lemma 4.2.17. Let N �M be a rigid, irreducible and quasi-regular inclusion
of type II1 factors. Then, the fusion algebra AFalgpN � Mq is a countable
fusion subalgebra of FalgpNq.
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Freeness of fusion algebras

The notion of freeness of fusion algebras was introduced in [37, Section 1.2], in
the study of free composition of subfactors. We recall the definition.

Definition 4.2.18 ([37, Section 1.2]). Let A be a fusion algebra and A0,A1 � A
fusion subalgebras. We say that A0 and A1 are free inside A if every alternating
product of irreducibles in Aizteu, remains irreducible and different from e.

Let M be a II1 factor and MKM a finite index M -M -bimodule. Whenever
α P AutpMq, we define the conjugation of K by α as the bimodule Kα �
Hpα�1q bM K bM Hpαq. Denote by R the hyperfinite II1 factor. Vaes proved
in [216, Theorem 5.1] that countable fusion subalgebras of FalgpRq can be made
free by conjugating one of them with an automorphism of R (see Theorem
4.2.19 below). Note that the same result has first been proven for countable
subgroups of OutpRq in [117]. In both cases, the key ingredients come from
[163].

Theorem 4.2.19 ([216, Theorem 5.1]). Let R be the hyperfinite II1 factor and
A0,A1 two countable fusion subalgebras of FalgpRq. Then,

tα P AutpRq | Aα
0 and A1 are freeu

is a dense Gδ-subset of AutpRq.

4.3 Proof of Theorem 4.D

We recall the following construction, from [87]. Consider the group Γ �
Q3 ` Q3 � SL3pQq, defined by the action A � px, yq � pAx, pAtq�1yq of SL3pQq
on Q3 ` Q3. Take α P R� Q, define Ωα P Z2pQ3 ` Q3, S1q such that

Ωα
�px, yq, px1, y1q� � exp

�
2πiαpxx, y1y � xy, x1yq� ,

for all px, yq, px1, y1q P Q3 ` Q3 ,

and extend Ωα to an S1-valued 2-cocycle on Γ by SL3pQq-invariance. Write
Λ � Z3 ` Z3. Then, by [87, Lemma 3.3] and [87, Example 3.4], the inclusions
N � N0 � P given by

N � LΩαpΛq, N0 � LΩαpZ3 ` Z3 � SL3pZqq, P � LΩαpΓq
satisfy the following properties.
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pP1q N � P is irreducible and quasi-regular,

pP2q N0 � P is quasi-regular,

pP3q N0 has property pT q.

Note that pP1q follows from the fact that the inclusion Λ � Γ is almost-normal,
meaning the commensurator CommΓpΛq defined as

CommΓpΛq :� tg P Γ | gΛg�1 X Λ has finite index in gΛg�1and in Λu
is the whole of Γ. We know that the group SL3pQq does not have any non-trivial
finite dimensional unitary representations (see [229]). The smallest normal
subgroup of Γ containing SL3pQq is Γ itself. This gives the following property.

pP4q The group Γ has no non-trivial finite dimensional unitary representations.

We will also need the following additional property, proven in [87, Example 3.4].

pP5q The inclusion LΩαpΛ0q � LΩαpΓq is irreducible, for every finite index
subgroup Λ0   Λ.

Theorem 4.3.1. Let Q be a II1 factor such that N � Q. Let B � N 1 XQ and
assume that

• N � Q is a quasi-regular and depth 2 inclusion,

• B is hyperfinite,

• there is no non-trivial �-homomorphism from N0 to any amplification of
Q,

• the fusion algebras AFalgpN � P q and FalgpN � Qq defined in Section
4.2.4 are free inside FalgpNq.

Then, for M � �
PbB� �NbB Q, we have that BimodpMq � BimodpQ � Q1q,

as tensor C�-categories, where N � Q � Q1 is the basic construction.

Outline of the proof of Theorem 4.D. We first prove Theorem 4.3.1 in
two steps. In Section 4.3.1, we construct a fully faithful tensor C�-functor
F : BimodpQ � Q1q Ñ BimodpMq. In Section 4.3.2, we prove that F is
essentially surjective, which completes the proof of Theorem 4.3.1. In Section
4.3.3, we give a proof of Theorem 4.D, relying on Theorem 4.3.1.

In the rest of Section 4.3 will always use the notation of Theorem 4.3.1.
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4.3.1 A fully faithful functor F : BimodpQ � Q1q Ñ BimodpMq

Denote by C the tensor C�-category whose objects are finite index inclusions
ψ : QÑ pQ8p with p P B8, pTrbτqppq   8 and ψpxq � xp for all x P N . The
tensor product on C is given by ψ1 bC ψ2 � pidb ψ2q � ψ1. Morphisms of C are
given by

HomCpψ1, ψ2q � tT P qB8p | @x P Q : Tψ1pxq � ψ2pxqT u .

Proposition 4.3.2. The natural inclusion I : ψ ÞÑ Hpψq of C into BimodpQq
defines an equivalence of tensor C�-categories C � BimodpQ � Q1q.

Proof. It is easy to check that I is a faithful tensor C�-functor. We prove that
I is full and that its essential range is BimodpQ � Q1q.
We first prove that I is full. Let T : pL2pQq8 Ñ qL2pQq8 be a Q-Q-bimodular
map between Hpψ1q and Hpψ2q. Then T P pQ8q, since T is right Q-modular.
We have Txp � xqT for all x P N , so it follows that T P pB8q. This proves
that I is full.

Let us prove that the image of I is contained in BimodpQ � Q1q. Take a finite
index inclusion ψ : Q Ñ pQ8p with p P B8, pTrbτqppq   8 and ψpxq � xp
for all x P N and let H � Hpψq. We claim that H is a Q-Q-subbimodule of
L2pQ1q8. Extend ψ to a map L2pQq Ñ L2ppQ8pq and note that its entries,
considered as operators on L2pQq, lie in Q1. Any non-zero column of ψ defines
a partial isometry v P ppM8�1pCqbQ1q satisfying vx � ψpxqv, for all x P Q.
Note that vv� P ψpQq1 X pQ8

1 p. If p � vv�, then we may apply the previous
procedure to the non-zero Q-Q-bimodule pp � vv�q � H � Hpψp�qpp � vv�qq.
Take a maximal family of non-zero partial isometries vi inside ppM8�1pCqbQ1q
satisfying ψpxqvi � vix for all x P Q and such that viv�i are pairwise distinct
orthogonal projections. Consider the projection r � p�°

viv
�
i . If r � 0 then

we can apply the previous procedure to the non-zero bimodule r �H. As above,
we get a non-zero partial isometry w P rpM8�1pCqbQ1q such that ψpxqw � wx,
for all x P Q. Then, ww� is orthogonal to all of the viv�i , which contradicts
maximality of the family. So, p � °

viv
�
i . Putting all these partial isometries

in a row, we get an element u P ppQ1q8 such that ux � ψpxqu, for all x P Q
and uu� � °

viv
�
i � p. This proves our claim.

We now prove that every bimodule H of BimodpQ � Q1q is contained in
the essential range of I. Assume that H arises as a Q-Q-subbimodule of
L2pQ1qbQk, for some k P N. We prove that H is a subbimodule of L2pQ1q8.
By Corollary 4.2.15, we have that H is isomorphic, as N -Q-bimodule, to a
subbimodule of L2pQq8. Writing H � Hpψq, for some finite index inclusion
ψ : Q Ñ qQnq, we find a non-zero N -central vector v P qpMn�1pCq b L2pQqq.
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Taking polar decomposition, we may assume that v P qpMn�1pCq b Qq is a
partial isometry satisfying ψpxqv � vx, for all x P N . As a consequence, we
have v�v P B. As in the previous paragraph, take a maximal family of non-zero
partial isometries vi inside qpMn�1pCqbQq satisfying ψpxqvi � vix for all x P N
and q � °

viv
�
i . Putting all partial isometries vi in one row, we get an element

u P qpMn�8pCqbQq such that ψpxqu � ux for all x P N and uu� � °
viv

�
i � q.

Define p � u�u and note that p P B8. Conjugating with u� from the beginning
yields a map ψ : Q Ñ pQ8p such that ψpxq � px, for all x P N and still
satisfying H � Hpψq.

Take a finite index inclusion ψ : Q Ñ pQ8p in C. Then, we have p P B8.
Denote by ι : PbB Ñ ppPbBq8p the inclusion map given by x ÞÑ xp on P and
by the restriction ψ|B on B. Since ψ preserves N , it also preserves B � N 1XQ
and we obtain a map ι �ψ : M Ñ pM8p. If T P HomCpψ1, ψ2q, then T P qB8p.
So, T defines an M -M -modular map from Hpι � ψ1q to Hpι � ψ2q. We conclude
that the map

F0 : C Ñ BimodpMq : ψ ÞÑ Hpι � ψq
is a functor.

Proposition 4.3.3. F0 is a fully faithful tensor C�-functor.

Proof. It is clear that F0 is faithful. We first prove that F0 is full. Take
T P HomM-M pHpι � ψ1q,Hpι � ψ2qq. Then T : pL2pMq8 Ñ qL2pMq8 is right
M -modular, hence T P pM8q. Since Txp � xqT for all x P P , we have T P
pB8q. So T is in the image of F0. The functor � on both BimodpQ � Q1q and
BimodpMq is given by T ÞÑ T�, so F is a C�-functor. Since Hpψ1qbM Hpψ2q �
Hppidb ψ2q � ψ1q, it follows immediately that F0 is a tensor C�-functor.

Now let G : BimodpQ � Q1q Ñ C be an inverse functor for the inclusion
I : C Ñ BimodpQ � Q1q. We define the fully faithful tensor C�-functor
F � F0 �G : BimodpQ � Q1q Ñ BimodpMq.

4.3.2 Proof of Theorem 4.3.1: essential surjectivity of F

We give a series of preliminary lemmas before proving that the functor F
constructed in the previous section is essentially surjective.

Lemma 4.3.4. Let MHM be a finite index M-M-bimodule and PbBKPbB �
PbBHPbB be a finite index PbB-PbB-subbimodule. Then K contains a
non-zero N -N -subbimodule L such that dim -N pLq   �8.
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Proof. Let ψ : M Ñ pMnp and ϕ : PbB Ñ qpPbBqkq be finite index inclusions
such that MHM � MHpψqM and PbBKPbB � PbBHpϕqPbB. Take a non-zero
partial isometry v0 P ppMn,kpCq b Mqq such that ψpxqv0 � v0ϕpxq, for all
x P PbB. We have v�0 v0 P ϕpP b Bq1 X qMkq, so the support projection
supp EPbBpv�0 v0q lies in ϕpPbBq1X qpPbBqkq. Moreover v0EPbBpv�0 v0q � v0.
So we can assume that q � supp EPbBpv�0 v0q.
We claim that ϕpN0q  PbB P . Recall that B is hyperfinite, by assumption. Let�
nAn be the dense union of an increasing sequence of finite dimensional von

Neumann subalgebras An of B. Since P b 1 � P bAn is a finite index inclusion
for every n, it suffices to show that ϕpN0q  PbB P b An for some n. Denote
by En the trace-preserving conditional expectation of B onto An. Then the
sequence of unital completely positive maps idb En on pPbBqk, still denoted
by En, converges pointwise in } }2 to the identity. Since N0 has property
(T) (see pP3q), Theorem 4.2.5 shows that pEnq converges uniformly in } }2 on
pϕpN0qq1. Take n P N such that }Enpxq � x}2   1{2 for all x P ϕpN0q. Assume
that ϕpN0q ¢PbB P bAn. By Theorem 5.6.1, there is a sequence of unitaries
uk P UpϕpN0qq such that for all x, y P qpPbBqkq, we have }Enpxukyq}2 Ñ 0 for
k Ñ8. In particular,

1 � }uk}2   1{2� }Enpukq}2 Ñ 1{2 ,
which is a contradiction. We have proved our claim.

This yields a �-homomorphism π : N0 Ñ rP lr and a non-zero partial isometry
v1 P qpMk,lpCq b PbBqr such that ϕpxqv1 � v1πpxq, for all x P N0. Similarly
to the first paragraph, we can assume that r � suppEP pv�1 v1q. Note that
EPbBpv�0 v0q � q. So v � v0v1 P ppMn,l bMqr is a non-zero partial isometry.
Moreover, we have vπpxq � ψpxqv, for all x P N0.

We claim that πpNq  P N . We first prove that it suffices to show that
πpNq  PbB NbB. Indeed, if this the case, we get a �-homomorphism
θ : N Ñ tpNbBqjt and a non-zero partial isometry u P rpMl,jpCq b PbBqt
such that πpxqu � uθpxq, for all x P N . Denote by ui the i-th column of
u. Then the closed linear span of tuiNbB | i � 1, . . . , ju defines a non-zero
πpNq-NbB-subbimodule of rpClbL2pPbBqq with finite right dimension. Using
the N -N -modular projection onto rpCl b L2pP qq and the action of B, we find a
non-zero πpNq-N -bimodule inside rpCl b L2pP qq which is finitely generated as
a right N -module.

Assume now that πpNq ¢PbB NbB. Then, Theorem 4.2.7 implies that the
quasi-normalizer of πpNq in rM lr sits inside rpPbBqlr. As a consequence,
v�v P πpNq1 X rM lr � rpPbBqlr. Since the inclusion N �M is quasi-regular,
we have that

v�ψpMqv � rpPbBqlr . (4.1)
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Denote by A the von Neumann algebra generated by ψpMq and vv�. Then
ψpMq � A � pMnp and A � pMnp has finite index. Using (4.1), we get that
v�Av � v�vpPbBqlv�v � v�Mnv, from which we deduce that PbB � M
has finite index. We get a contradiction. Indeed, M being an amalgamated
free product, we can find in L2pMq infinitely many pairwise orthogonal
PbB-PbB-bimodules by means of alternating powers of L2pPbBqaL2pNbBq
and L2pQq a L2pNbBq.
The previous claim yields a �-homomorphism ρ : N Ñ sNms and a non-zero
partial isometry w P rpMl,mpCq b P qs such that πpxqw � wρpxq for all
x P N . Denote by wi the i-th column of w. Define L as the closed linear
span of tv1wiN | i � 1, . . . ,mu. Then, L is a non-zero, since EP pw�v�1 v1wq �
w�EP pv�1 v1qw and r � supp EP pv�1 v1q. So L is a non-zero ϕpNq-N -subbimodule
of K with finite right dimension.

Lemma 4.3.5. Let K be a finite index PbB-PbB-subbimodule of a finite
index M-M-bimodule H and let NLN � NKN be an irreducible finite index
N -N -subbimodule. Then NLN is isomorphic to a subbimodule of NL2pP qN.

Proof. Assume, by contradiction, that L is not contained in NL2pP qN. Take
some non-trivial finite index irreducible N -N -bimodule LQ in L2pQq and some
non-trivial finite index irreducible N -N -bimodule LP in L2pP q both with right
dimension greater than or equal to 1. Denote by X0 the } }2-closure of L �M .
Lemma 4.2.8 implies that X0 is a non-zero N -M -bimodule which is isomorphic
to a subbimodule of H and lies in LbN L2M . Define the N -M -bimodules

Xn � pLP bN LQqbn bN X0 .

Note that L P AFalgpN � P q. By assumption, the fusion algebras FalgpN �
Qq and AFalgpN � P q are free inside FalgpNq. Therefore, as in [87], the
Xn follow pairwise disjoint as N -N -bimodules and hence pairwise disjoint as
N -M -bimodules.

Decompose X0 � H is a direct sum of irreducible N -N -bimodules Yi. Write
pLQq0 � LQ X Q and pLP q0 � LP X P . Then, pLP q0 � pLQq0 � � � pLQq0 � Yi is
non-zero. If not, we had

M � Yi �M �M � pLP q0 � pLQq0 � � � pLQq0 �N � Yi �M � 0 ,

contradicting the fact that M is a factor. As above, the freeness assumption
implies that pLP bN LQqbn bN Yi is irreducible. Then, by Lemma 4.2.8, we
have that pLP bN LQqbn bN Yi sits inside H as the } � }2-closure of pLP q0 �
pLQq0 � � � pLQq0 � Yi. We have proven that H contains a copy of each Xn.

Note that dim -M pXnq ¡ dim -M pX0q. As a consequence, H, as a right
M -module, has infinite dimension, which is a contradiction.
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Lemma 4.3.6. Let H be a finite index M-M-bimodule and K a finite index
PbB-PbB-subbimodule. Then, K is isomorphic to a multiple of the trivial
P -P bimodule.

Proof. By Lemma 4.3.4, we have a non-zero N -N -subbimodule L � K with
finite right dimension. Then, for x, y P QNPbBpNq, the closure of Nx � L � yN
is still an N -N -subbimodule of K with finite right dimension. Since N � PbB
is quasi-regular, the linear span of all N -N -subbimodules of K with finite right
dimension is dense in K. Then, a maximality argument shows that K can be
decomposed as the direct sum N -N -subbimodules with finite right dimension.
By symmetry, K decomposes as the direct sum of N -N -bimodules with finite
left dimension. As a consequence, K may be written as the direct sum of finite
index N -N -subbimodules.

Let L be an irreducible finite index N -N -subbimodule of K. Lemma 4.3.5 shows
that L is contained in L2pP q. Remember that

P � LΩpQ3 ` Q3 � SL3pQqq , N � LΩpZ3 ` Z3q .
Hence, L arises as the } � }2-closure of NugN for some element g P Q3 ` Q3 �
SL3pQq. By almost-normality (see property pP1q and the remarks following
it), take a finite index subgroup Λ0 of Z3 ` Z3 such that AdpgqpΛ0q � Z3 `
Z3. Denote by L0 the closure of NugLΩpΛ0q. Then, L0 is an irreducible
N -LΩpΛ0q-subbimodule of L. Note that

L0 b
LΩpΛ0q

LΩpΛ0qu�gN � L2pNq .

Lemma 4.2.8 implies that K contains a copy of the trivial N -N -bimodule L2pNq,
realized as the } � }2-closure of L0u

�
gN .

Write K � Hpψq for some finite index inclusion ψ : PbB Ñ qpPbBq8q, where
pTrbτqpqq   8. By the above paragraph, we can take a trivial N -N -bimodule
inside K. Then, there is an N -central vector v P qL2pPbBq8. Taking polar
decomposition, we may assume that v is a partial isometry in qpM8�1pCqbPbBq
satisfying ψpxqv � vx, for all x P N . Note that vv� P ψpNq1 X qpPbBq8q.
Hence, pq � vv�q � K defines a N -PbB-subbimodule of K and we may apply
the previous procedure. As in the proof of Proposition 4.3.2, a maximality
argument yields a family of partial isometries vi P qpM8�1pCqbPbBq satisfying
ψpxqvi � vix, for all x P N and such that

°
viv

�
i � q. Putting these partial

isometries in a row, we obtain an element w P qpPbBq8 satisfying ww� �°
viv

�
i � q. By irreducibility of N � P (see pP1q), we have a projection

p � w�w P pN 1 X PbBq8 � B8. Conjugating ψ with w� from the beginning,
we obtain a finite index inclusion ψ : PbB Ñ ppPbBq8p, where p P B8 such
that pTrbτqppq   8 and ψpxq � xp for all x P N and still satisfying K � Hpψq.
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Let g P Γ � Q3 ` Q3 � SL3pQq and Λ0   Z3 ` Z3 be finite index subgroup such
that Adpg�1qpΛ0q � Λ. Denote by αg�1 the �-homomorphism LΩpΛ0q Ñ LΩpΛq
induced by Adpg�1q. For x P LΩpΛ0q we have

ψpugqu�gx � ψpugqαg�1pxqu�g � ψpugqψpαg�1pxqqu�g � xψpugqu�g .

By pP5q, we have that LΩpΛ0q � P is irreducible. As a consequence, vg �
ψpugqu�g P UppB8pq. Note that ψpBq � ψpNq1 X ppPbBq8p � pB8p and
vg P ψpBq1 X pB8p.

We prove that the inclusion ψpBq � pB8p has finite index using Theorem
4.2.11. Consider the conjugate bimodule K of PbBKPbB. As proven above, we
may write K � Hpψq, where ψ : PbB Ñ qpPbBq8q is a finite index inclusion
satisfying ψpxq � xq, for all x P N and q P B8 is a projection such that
pTrbτqpqq   8. Note that K bPbB K � Hppψ b idq � ψq. Hence there is a
conjugate map R : L2pPbBq Ñ Hppψ b idq � ψq. Considering R as an element
of ppb qqpM8,1pCq b PbBq we have

R P ppb qqpM8,1pCq b PbBq XN 1 � ppb qqpM8,1pCqbBq .

Define ψB : B Ñ pB8p and ψB : B Ñ qB8q as the restrictions of ψ and ψ to
B and S : L2pBq Ñ HppψB b idq � ψBq as the restriction of R. Similarly, we
find an intertwiner S : L2pBq Ñ HppψB b idq � ψBq, giving a pair of conjugate
morphisms for HpψBq. Then the same argument as in [134, Lemma 3.2] implies
that ψpBq1 X pB8p is of finite type I.

It follows that g ÞÑ vg P ψpBq1 X pB8p is a direct integral of finite dimensional
unitary representations of Γ and hence trivial, since Γ has no non-trivial finite
dimensional unitary representations (see pP4q). We conclude that ψpugq � ugp
and that PKP is a multiple of the trivial P -P -bimodule.

Lemma 4.3.7. Let ψ : PbB Ñ ppPbBqnp be a finite index inclusion such
that

ψpP b 1q
�
p
�
Cn b L2pPbBq��P b 1

is a multiple of the trivial P -P -bimodule. Then there exists a non-zero partial
isometry u P Mn,8pCqbPbB such that uu� � p, q � u�u P B8 and u�ψpxqu �
qx for all x P P , where we consider P � P8 diagonally.

Proof. Consider the P -P -bimodule H given by

PHP � ψpP b 1q
�
p
�
Cn b L2pPbBq��P b 1 .

Since H is a multiple of the trivial P -P -bimodule, there exists a non-zero
vector v P p�Cn b L2pPbBq� such that ψpxqv � vx for all x P P . Taking its
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polar decomposition, we may assume that v is a non-zero partial isometry in
ppCn b PbBq. As in the proof of Proposition 4.3.2, a maximality argument
provides a family of non-zero partial isometries pviq, inside ppCn b PbBq,
satisfying ψpxqvi � vix for all x P P and such that p � °

viv
�
i . Putting all vi

in one row, we get u P Mn,8pCqbPbB. Then ψpxqu � ux, for all x P P . We
also have that uu� � °

viv
�
i � p and u�u P p1 b P b 1q1 X pPbBq8 � B8.

Thus, u is the required partial isometry.

Proof of Theorem 4.3.1. Let MHM be a finite index irreducibleM -M -bimodule.
We prove that H is isomorphic to a bimodule in the range of the functor
F : BimodpQ � Q1q Ñ BimodpMq, constructed in Section 4.3.1. We do this in
two steps.

Step 1. There exists a projection p P pPbBq8 with pTrbτqppq   �8 and
�-homomorphism ψ : M Ñ pM8p such that

• ψpMq � pM8p has finite index,

• ψpPbBq � ppPbBq8p and this inclusion has essentially finite index and

• MHM � MHpψqM.

Proof of Step 1. Let ψ : M Ñ pMnp be a finite index inclusion such that
MHM � MHpψqM. By symmetry, Theorem 4.2.4 and the remarks preceding it,
we are left with proving the two following statements.

1. ψpPbBqq  M PbB, for every projection q P ψpPbBq1 X pMnp.

2. Whenever K � L2pMq is a pPbBq-pPbBq-subbimodule satisfying
dim -PbBpKq   �8, we have K � L2pPbBq.

By assumption, there is no non-trivial �-homomorphism from N0 to any
amplification of Q. It follows that ψpN0q ¢M Q. Hence, Theorem 4.2.6 implies
that ψpN0q  M PbB. So there is a �-homomorphism ϕ : N0 Ñ qpPbBqmq and
a non-zero partial isometry v P ppMn,mpCq bMqq such that ψpxqv � vϕpxq for
all x P N0. We have v�v P ϕpN0q1 X qMmq. So v�v P qpPbBqmq by Theorem
4.2.7. Then,

v�vpQNqMmqpϕpN0qq2qv�v � qpPbBqmq ,
by Theorem 4.2.7 again. Since N0 � P is quasi-regular (see pP2q), we also have
that

v�ψpPbBqv � v�vpQNqMmqpϕpN0qq2qv�v � qpPbBqmq .
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Note that all the previous arguments remain true when cutting down ψ with a
projection in ψpPbBq1 X pMnp, so we have proven (i). Theorem 4.2.7 implies
(ii) and Step 1 is proven.

Step 2. We may assume that p P B8 and that the �-homomorphism ψ satisfies

• ψpxq � px, for all x P P ,
• ψpBq � B8,

• ψpQq � pQ8p.

Proof of Step 2. By Step 1, the inclusion ψpPbBq � ppPbBq8p has essentially
finite index. Let q be a projection in ψpPbBq1 X ppPbBq8p such that
K � ψpPbBq

�
qL2pPbBq8�PbB is a finite index PbB-PbB-subbimodule of

PbBHPbB. Lemma 4.3.6 implies that P b 1KP b 1 is isomorphic to a multiple
of the trivial P -P -bimodule. Lemma 4.3.7 yields a non-zero partial isometry
u P qpM8,mpCq b PbBq satisfying u�ψpxqu � u�ux for all x P P and such
that uu� � q and u�u P Bm. Since ψpPbBq � ppPbBq8p has essentially
finite index, this procedure provides a non-zero partial isometry u P pPbBq8
satisfying u�ψpxqu � u�ux for all x P P with uu� � p and u�u P B8.
Conjugating ψ with u� from the beginning, we may assume that p P B8

and ψpxq � px for all x P P .
We have P 1 XM � B and ψpxq � px for all x P P , with p P B8, therefore
ψpBq � B8.

Since p P pN 1 X Qq8 and ψpxq � px for all x P P , the �-homomorphism ψ
extends to an N -N -bimodular map v : L2pMq Ñ L2ppM8pq. By freeness of
FalgpN � Qq and FalgpN � P q inside FalgpNq, we have that vpL2pQqq is an
N -N -subbimodule of L2ppQ8pq. Hence ψpQq � pQ8p, which ends the proof of
Step 2.

4.3.3 Proof of Theorem 4.D

We use the following version of [146, Theorem 0.2] for the proof of Theorem
4.D.

Theorem 4.3.8 (See [146, Theorem 0.2]). Let Γ be a property (T) group and
M a separable II1 factor. Let J � H2pΓ,S1q be the set of scalar 2-cocycles Ω
such that there exists a (not necessarily unital) non-trivial �-homomorphism
from LΩpΓq to an amplification of M . Then J is countable.
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Proof of Theorem 4.D. Fix an inclusion of II1 factors N � Q and assume that
N is hyperfinite. Suppose also that N � Q is quasi-regular and has depth 2.
Denote by N � Q � Q1 the basic construction.

Let α P R � Q and consider the groups Λ,Γ and the scalar 2-cocycle Ωα P
Z2pΓ, S1q defined in at the beginning of Section 4.3. Since the group Z3 ` Z3 �
SL3pZq has property (T), Theorem 4.3.8 implies that there are uncountably
many α P R � Q such that there is no non-trivial �-homomorphism from
N0 � LΩα

�
Z3 ` Z3 � SL3pZq

�
to any amplification of Q. Take one such

α P R � Q. Note that by pP1q, pP3q and Lemma 4.2.17, the fusion algebra
F � AFalg

�
LΩαpΛq � LΩαpΓq

�
is countable.

Observe that LΩαpΛq and N are two copies of the hyperfinite II1 factor and
take an isomorphism θ : N Ñ LΩαpΛq. Then, the fusion algebra Fθ may be
viewed as a fusion subalgebra of FalgpNq. Since FalgpN � Qq is a countable
fusion subalgebra of FalgpNq, Theorem 4.2.19 allows us to choose θ such that
Fθ is free with respect to FalgpN � Qq. We identify N and LΩαpΛq through
this isomorphism and all assumptions of Theorem 4.3.1 are satisfied. Write
Pα � LΩαpΓq and write

Mα � pPαbBq �
NbB

Q , where B � N 1 XQ .

Using Theorem 4.3.1, we obtain that BimodpMαq � BimodpQ � Q1q.
We prove that stable isomorphism classes of Mα, α P R � Q, are countable.
Assume by contradiction that there exists an uncountable subset J � R � Q

such that Mαj are pairwise stably isomorphic, for j P J . We find k P J and an
uncountable subset I � J such that Mαi embeds (not necessarily unitally) into
Mαk , for all i P I. In particular, LΩαi

�
Z3 ` Z3 � SL3pZq

�
embeds into Mαk ,

for all i P I. Since Z3 ` Z3 � SL3pZq is a property (T) group and cohomology
classes of the cocycles �

Ωα
�|Z3`Z3�SL3pZq , α P R� Q

are two by two non-equal, this contradicts Theorem 4.3.8.

4.4 Applications

4.4.1 Examples of categories that arrise as BimodpMq

In this part, we give examples of categories that arise as BimodpMq of some
II1 factor M . Note that the results in [216] and in [87] show that the trivial
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tensor C�-category and the category of finite dimensional representation of every
compact, second countable group can be realized as a category of bimodules.

Finite tensor C�-categories

The following reconstruction theorem for finite tensor C�-categories is well
known, but for convenience, we give a short proof. We use Jones’ planar
algebras [123] and Popa’s reconstruction theorem for finite depth standard
invariants [161]. See also [35] for a similar statement.

Theorem 4.4.1. Let C be a finite tensor C�-category. Then there exists a
finite index depth 2 inclusion Q � Q1 of hyperfinite II1 factors such that
BimodpQ � Q1q � C.

Proof. We define a depth 2 subfactor planar algebra P , such that the inclusion
of hyperfinite II1 factors Q � Q1 associated with it by [161, 123] satisfies
BimodpQ � Q1q � C. Let x P C be the direct sum of representatives for every
isomorphism class of irreducible objects in C. Denote by x the conjugate object
of x. Let

Pk :� Endpxb xb � � � b xloooooooomoooooooon
k factors

q .

We prove that P � �
Pk is a subfactor planar algebra. Composition of

endomorphisms and the �-functor of C make P a �-algebra. The categorical
trace of C defines a positive trace on P . Moreover, the graphical calculus for
tensor C�-categories induces an action of the planar operad on P . We have
dimP0 � 1, since 1C is irreducible. Moreover, for all k we have dimPk   8,
since C is finite. Finally, the closed loops represent the number dimC x � 0.
So P is a subfactor planar algebra. It has depth 2, since dim ZpPkq is the
number of isomorphism classes of irreducible objects of C for every k ¥ 1 and,
in particular, dim ZpP1q � dim ZpP3q.
Note that, in the language of [161], finite depth subfactor planar algebras
correspond to canonical commuting squares [36, 124]. So, by [161], there is
an inclusion Q � Q1 of hyperfinite II1 factors with associated planar algebra
PQ�Q1 � P . Then x corresponds to QL2pQ1qQ1. Let D � BimodpQ � Q1q
and denote by Q � Q1 � Q2 the basic construction. If p, q are minimal
projections in Q1 X Q2, we canonically identify HomQ-QppL2pQ1q, qL2pQ1qq
with qpQ1 X Q2qp. This defines a C�-functor F : D Ñ C sending pL2pQ1q �
ppQL2pQ1q bQ1 L2pQ1qQq to ppxb xq and mapping morphisms as given by the
identification PQ�Q1 � P . Then F is fully faithful and essentially surjective. We
have to prove that F preserves tensor products. Let p,q be projections in Q1XQ2.
The shift-by-two operator sh2 : P2 Ñ P4 is defined by adding two strings on the
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left. By [36], we have pL2pQ1qbQ qL2pQ1q � p � sh2pqqL2pQ2q as Q-Q-bimodules.
On the other hand, we have ppxbxqbqpxbxq � ppbqqpxbxbxbxq in C. Since
under the identification Pk � Q1 XQk the shift-by-two operator corresponds
to q ÞÑ 1 b q, we have C � D as tensor C�-categories. This completes the
proof.

Proof of Theorem 4.A. Let C be a finite tensor C�-category. By Theorem 4.D
it suffices to show that there is a finite index, depth 2 inclusion N � Q of
hyperfinite II1 factors, such that for the basic construction N � Q � Q1 we
have BimodpQ � Q1q � C. Indeed, if N � Q is of finite index, then it is
quasi-regular. By Theorem 4.4.1, there is a finite index depth 2 inclusion
N�1 � N of hyperfinite II1 factors such that BimodpN�1 � Nq � C. Let
N�1 � N � Q � Q1 be the basic construction. Then N � Q is a finite index,
depth 2 inclusion and BimodpQ � Q1q � BimodpN�1 � Nq � C.

Representation categories

In [87] the categories of finite dimensional representations of compact second
countable groups were realized as bimodule categories of a II1 factor. As already
mentioned, this forms a natural class of tensor C�-categories, since they can
be abstractly characterized as symmetric tensor C�-categories with at most
countably many isomorphism classes of irreducible objects. We realize categories
of finite dimensional representations of discrete countable groups and of finite
dimensional corepresentations of certain discrete Kac algebras as bimodule
categories of a II1 factor. Neither does this class of categories have an abstract
characterization, nor does the finite dimensional corepresentation theory of a
discrete Kac algebra describe it completely. However, Corollary 4.4.4 shows that
we have interesting applications coming from this class of tensor C�-categories.

For notation concerning quantum groups, we refer the reader to the appendix
in Section 4.5.

Definition 4.4.2 (See Section 4.5 and Theorem 4.5 of [198]). A discrete
Kac algebra A is called maximally almost periodic, if there is a family
of finite dimensional corepresentations Un P A b BpHUnq such that A �
spantpidb ωqpUnq |n P N, ω P BpHUnq�u
Theorem 4.4.3. Let A be a discrete Kac algebra admitting a strictly outer
action on the hyperfinite II1 factor. Then there is a II1 factor M such that
BimodpMq � UCorepfinpAcoopq.

Proof. Since A acts strictly outerly on the hyperfinite II1 factor R, the inclusion
R � A
R � pAcoop
A
R is a basic construction by [212, Proposition 2.5 and
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Corollary 5.6]. The inclusion R � A
R has depth 2 by [212, Corollary 5.10]
and since A is discrete, it is quasi-regular. Moreover, we have BimodpA
R �pA 
 A 
 Rq � UCorepfinpAcoopq by Theorem 4.5.1. So Theorem 4.D yields a
II1 factor M such that BimodpMq � UCorepfinpAcoopq.

Proof of Theorems 4.C. By Theorem 4.4.3 it suffices to show that every discrete
group G and every amenable and every maximally almost periodic Kac algebra
A has a strictly outer action on the hyperfinite II1 factor R.

Let us first consider the case of a discrete group. The non-commutative
Bernoulli shift G ñ pM2pCq, trqbG is well known to be outer. It is clear
that b8

n�1pM2pCq, trq is isomorphic to R.

First note that pAcoopqcoop � A for all quantum groups A. By Vaes [213,
Theorem 8.2], it suffices to show that every amenable and every maximally
almost periodic Kac algebra A there is a faithful corepresentation of Acoop in
the hyperfinite II1 factor.

If A is a discrete amenable Kac algebra, then so is Acoop. By [213, Proposition
8.1], Acoop has a faithful corepresentation into R. If A is a discrete maximally
almost periodic Kac algebra, then Acoop is also maximally almost periodic, since
A has a bounded antipode. There is a countable family of corepresentations Un
of Acoop whose coefficients span A densely. Considering `nBpHUnq as a von
Neumann subalgebra of R, the corepresentation `nUn of Acoop is faithful.

As a corollary of Theorem 4.C, we get the following improvement of [117,
Corollary 8.8] and [86]. This is the first example of an explicitly known bimodule
category with uncountably many isomorphism classes of irreducible objects.
Corollary 4.4.4. Let G be a second countable, compact group. Then there is
a II1 factor M such that OutpMq � G and every finite index bimodule of M is
of the form Hpαq for some α P AutpMq. In particular, the bimodule category of
M can be explicitly calculated and has an uncountable number of isomorphism
classes of irreducible objects.

The exact sequence 1 Ñ OutpMq Ñ grppMq Ñ FpMq Ñ 1 shows that the
fundamental group of M obtained in Corollary 4.4.4 is trivial. Note, that the
factors constructed in [86, 117] also have trivial fundamental group.

Proof. Let G be a second countable, compact group. By [199, Theorem
4.2], LpGq is maximally almost periodic and its irreducible, finite dimensional
corepresentations are one dimensional and indexed by elements of G. Their
tensor product is given by multiplication in G. So we can apply Theorem 4.C
to the discrete Kac algebra LpGq in order to obtain M .
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4.4.2 Possible indices of irreducible subfactors

In this section, we investigate the structure of subfactors of the II1 factor M
that we obtained in Theorem 4.A. We write

CpMq � tλ | there is an irreducible finite index subfactor of M with index λu .

We use the fact that the lattice of irreducible subfactors of a II1 factor is
actually encoded in its bimodule category. In special cases, indices of irreducible
subfactors correspond to Frobenius-Perron dimensions (see [83, Section 8]) of
objects in the bimodule category. Using recent work on tensor categories [103]
and Theorem 4.A, we give examples of of II1 factors M such that CpMq can be
computed explicitly and contains irrationals.

Definition 4.4.5 (See [92, 237]). Let C be a compact tensor C�-category with
tensor unit 1C .

1. An algebra pA,m, ηq in C is an object A in C with multiplication and unit
maps m : AbA Ñ A and η : 1C Ñ A such that the following diagrams
commute

AbAbA
mbid

//

idbm
��

AbA

m

��

AbA
m

// A

Ab 1C

idbη
��

A
�

//

�
oo 1C bA

ηbid
��

AbA
m

// A AbA .
m

oo

2. A coalgebra pA,∆, εq in C is an object A in C with comultiplication and
counit map ∆ : A Ñ A bA and ε : A Ñ 1C such that pA,∆�, ε�q is an
algebra.

3. A Frobenius algebra pA,m, η,∆, εq in C is an object A in C with maps m,
η, ∆, ε such that pA,m, ηq is an algebra, ∆ � m�, ε � η� and

pidbmq � p∆b idq � ∆ �m � pmb idq � pidb∆q .

4. A Frobenius algebra pA,m, η,∆, εq is special if ∆ and η are isometric.

5. A Frobenius algebra A is irreducible if dimpHomp1C ,Aqq � 1.

Remark 4.4.6. Note that the notion of a special Frobenius algebra is equivalent
to the notion of a Q-system [134].
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The following lemma and proposition are probably well known, but since we
could not find a reference, we give a short proof for convenience of the reader.

Lemma 4.4.7. Let M �M1 be a finite index inclusion of tracial von Neumann
algebras. Then L2pM1q is a special Frobenius algebra in BimodpMq. The
Frobenius algebra L2pM1q is irreducible if and only if M �M1 is irreducible.

Proof. We prove that L2pM1q is an algebra in BimodpMq with coisometric
multiplication and isometric unit. By [134], this shows that L2pM1q is a special
Frobenius algebra. The multiplication on L2pM1q is given by mpxbM yq � xy,
for x, y PM . The commutative diagram

L2pM1q bM L2pM1q
m

//

�
��

L2pM1q

L2pM2q

e
88pppppppppppp

proves thatm is well defined and coisometric. Here we denote byM �M1 �M2
the basic construction and we denote by e the Jones projection. The unit map
of L2pM1q is given by the canonical embedding L2pMq Ñ L2pM1q.
The inclusion M � M1 is irreducible if and only if ML2pM1qM1 is irreducible
if and only if ML2pM1qM � ML2pM1q bM1 L2pM1qM contains a unique copy of
ML2pMqM.

Whenever H is a finite index M -M -bimodule over a II1 factor M , we denote by
H0 the set of bounded vectors in H. Recall that H0 is dense in H.

Proposition 4.4.8. Let M be a II1 factor. Then there is a bijection between
irreducible special Frobenius algebras in BimodpMq and irreducible finite index
inclusions M �M1 of II1 factors. The bijection is given by

H ÞÑ pM � H0q and pM �M1q ÞÑ ML2pM1qM .

Proof. Lemma 4.4.7 shows that L2pM1q is an irreducible special Frobenius
algebra for all irreducible finite index inclusions M � M1. Let pH,m, ε,∆, ηq
be an irreducible special Frobenius algebra in BimodpMq. We have to prove
that M � H0 is a finite index, irreducible inclusion of von Neumann algebras.
Let M2 � Hom-M pHq be the commutant of the right M -action. Then
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H0 bH //

%%JJJJJJJJJJJ
HbM H

m

��

H

yields a map φ : H0 ÑM2. By considering the restriction m : H0 b L2pMq Ñ
H, it is clear that φ is injective. Consider the special Frobenius algebra
pL2pM2q,m2, η2,∆2, ε2q. We prove that φpH0q is a Frobenius subalgebra of
L2pM2q. Indeed, the composition H0 b H0 Ñ H bM H Ñ H induces a
multiplication on H0, since M -M -bimodular maps send M -bounded vectors to
M -bounded vectors. Since m is associative, we have for ξ, ξ1 P H0

φpmpξ, ξ1qq � x1M � m � pmb idqpξ, ξ1, 1M q

� m � pidbmqpξ, ξ1, 1M q � φpξq � zφpξ1q � {φpξq � φpξ1q .

So m is the restriction of m2. By taking adjoints, we see that ∆ is the restriction
of ∆2. Next, note that m � pη b idq � id � m2 � pη2 b idq. So φpηpxqq � ξ � xξ
for all x P M � L2pMq and all ξ P H. So η agrees with η2. Again, by taking
adjoints, ε is the restriction of ε2.

Let R : L2pMq Ñ HbM H denote the standard conjugate for H [134]. Frobenius
algebras are self-dual via ∆ � η, that is ∆ � η : L2pMq Ñ HbM H is a conjugate
for H. In particular, there is an M -M -bimodular isomorphism ψ : H Ñ H such
that

HbM H
R�

// L2pMq

HbM H
m

//

ψbid

OO

H

ε

OO

commutes. Denoting by R2 : L2pMq Ñ L2pM2q bM L2pM2q the standard
conjugate for L2pM2q we have the commuting diagram
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L2pM2q bM L2pM2q
R�

2

// L2pMq

L2pM2q bM L2pM2q
m2

//

p ��qbid

OO

L2pM2q .

ε2

OO

Note that, by the definition of standard conjugates, R is the composition of
R2 with the orthogonal projection L2pM2q bM L2pM2q Ñ HbM H. So ψ is the
restriction of � �. Now consider the commutative diagram

L2pM2q bM L2pM2q
pR�

2 bidq�pidb∆2q
// L2pMq bM L2pM2q

L2pM2q bM L2pM2q
pm2bidq�pidb∆2q

//

p ��qbid

OO

L2pM2q bM L2pM2q .

ε2bid

OO

It restricts to the corresponding diagram with L2pM2q replaced by H. Define
m � pR� b idq � pidb∆q : H0 bH Ñ H and m2 � pR�

2 b idq � pidb∆2q. Since
m2 � pε2 b idq � pm2 b idq � pidb∆2q

in the Frobenius algebra L2pM2q, we have that

M2 b L2pM2q
m2

// L2pM2q

M2 b L2pM2q
m2

//

p ��qbid

OO

L2pM2q

and
H0 bH

m

// H

H0 bH
m

//

ψbid

OO

H .

commute and the second diagram is a restriction of the first one. Denote by
φ : H0 ÑM2 the embedding defined by m. Then φpxq � φpxq� for x P H0 and
φpH0q � φpH0q. This proves that φpH0q is closed under taking adjoints.

We already proved that φpH0q is a �-subalgebra of M2. Since MH has finite
dimension, φpH0qis finitely generated over M . Hence, it is weakly closed in M2,
so it is a von Neumann subalgebra. Finally, ML2pH0qM � MHM, so M � H0 is
irreducible and has finite index.
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Remark 4.4.9. 1. By uniqueness of multiplicative dimension functions
on finite tensor C�-categories, see [45], we have rM1 : M smin �
FPdimpML2pM1qMq, where rM1 : M smin denotes the minimal index
[104, 133] and FPdim denotes the Frobenius Perron dimension [83, Section
8]. So if M � M1 is extremal (for example irreducible), then we have
rM1 : M s � FPdimpML2pM1qMq.

2. By Proposition 4.4.8, irreducible special Frobenius algebras correspond
to irreducible inclusions M � M1, hence to irreducible subfactors
N � M . In particular, if BimodpMq is finite, then CpMq �
tFPdimpHq | H irreducible special Frobenius algebra in BimodpMqu.

We can prove Theorem 4.B now.

Proof of Theorem 4.B. Denote by C the Haagerup fusion category [4]. In [103],
possible principle graphs of irreducible special Frobenius algebras in C are
classified. Lemma 3.9 in [103] gives a list of possible principle graphs of
non-trivial simple algebras in C. Note that the list of indices in Theorem 4.B is
the same as the indices of graphs in [103, Lemma 3.9]. We will refer with 1), 2),
etc. to the graphs in this lemma. We prove that all the indices of these graphs,
are actually realized by some irreducible special Frobenius algebra in C.

Since, by [103, Theorem 3.25], there are three pairwise different categories that
are Morita equivalent to C, all the possible principal graphs of minimal simple
algebras are are actually realized by some irreducible special Frobenius algebra
in C. So the graphs 1) and 3) are realized. Using the notation of [103] for
irreducible objects in C, the graphs 4), 6) and 7) are realized by the irreducible
special Frobenius algebras ηη, νν and µµ. We are left with the graphs 2) and
5). Theorem 3.25 in [103] gives the fusion rules for module categories over C.
A short calculation shows that the square of the dimension of the second object
in the module category associated with the Haagerup subfactor is the index of
the graph 2). This proves that the graph 2) is realized. A similar calculation
shows that the second object in the second non-trivial module category over C
gives rise to an irreducible special Frobenius algebra with principal graph given
by 5).

So all indices in [103, Lemma 3.9] are actually attained by some irreducible
special Frobenius algebra in C. According to Theorem 4.A it is possible to find
a II1 factor M such that BimodpMq � C. We conclude using Remark 4.4.9.
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4.5 Categories of unitary corepresentations and
bimodule categories of subfactors

In this section, we prove that the category of finite dimensional unitary
corepresentations of a discrete Kac algebra A, whose coopposite Acoop acts
strictly outerly on the hyperfinite II1 factor R, is realized as the the bimodule
category of the inclusion A
R � pA
 A
R. For convenience of the reader,
we give a short introduction.

4.5.1 Preliminaries on quantum groups

Locally compact quantum groups (see [131])

A locally compact quantum group in the setting of von Neumann algebras is a von
Neumann algebra A equipped with a normal �-homomorphism ∆ : AÑ AbA
and two normal, semi-finite, faithful weights φ, ψ satisfying

• ∆ is comultiplicative: pidb∆q �∆ � p∆b idq �∆.

• φ is left invariant: φppω b idqp∆pxqqq � φpxqωp1M q for all ω P M�
� and

all x PM�.

• ψ is right invariant: ψppidb ωqp∆pxqqq � ψpxqωp1M q for all ω PM�
� and

all x PM�.

We call ∆ the comultiplication of A and φ, ψ the left and the right Haar weight
of A, respectively. If φ and ψ are tracial, then A is called a Kac algebra. If A
is of finite type I, then we say that A is discrete. If φ and ψ are finite, we say
that A is compact.

If Γ is a discrete group, then 8̀pΓq is a discrete Kac algebra with comultiplication
given by ∆pfqpg, hq � fpghq and the left and right Haar weight both induced
by the counting measure on Γ.

For any locally compact quantum group pA,∆q one can construct a dual locally
compact quantum group p pA, p∆q and a coopposite locally compact quantum
group Acoop. They both are represented on the same Hilbert space as A. Hence,
it makes sense to write formulas involving elements of A and pA at the same
time. We have pA,∆q � pxxA, pp∆q and A is compact if and only if pA is discrete.
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Corepresentations (see [205])

A unitary corepresentation in H of a locally compact quantum group A is a
unitary U P AbBpHq such that p∆ b idqpUq � U23U13. In what follows, we
refer to unitary corepresentations simply as corepresentations. If U P BpHU qbA
is a corepresentation of A, then we also refer to U21 inAbBpHU q as a
corepresentation A. A corepresentation U of A is called finite dimensional
if HU is finite dimensional. The direct sum of two corepresentations U, V of
A is denoted by U ` V P AbpBpHU q ` BpHV qq � AbBpHU q ` AbBpHV q.
The tensor product of two corepresentations U and V is given by U b V �
U12V13 P AbBpHU qbBpHV q. An intertwiner between two corepresentations
U and V is a bounded linear map T : HU Ñ HV satisfying pid b T qU �
V pid b T q. The space of all intertwiners between U and V is denoted
by HompU, V q. To every irreducible corepresentation U P AbBpHU q of A,
one associates its conjugate corepresentation p� b qpUq P AbBpHU q. Here
HU denotes the conjugate Hilbert space of HU . With this structure, the
corepresentations of a locally compact quantum group A become a tensor
C�-category UCoreppAq. Its maximal compact tensor C�-subcategory is the
category of finite dimensional corepresentations UCorepfinpAq. If A is a compact
quantum group, every irreducible corepresentation of A is finite dimensional and
every corepresentation is a direct sum of (possibly infinitely many) irreducible
corepresentations. Coefficients of tensor products of arbitrary length of its
irreducible corepresentations of A span it densely .

Let A denote a compact quantum group. Then we can describe the evaluation of
the Haar states on coefficients of corepresentations. In particular, pidbψqpUq �
pidb φqpUq � δU,ε � 1, where δU,ε is 1 if U is the trivial corepresentation and 0
otherwise.

If A is discrete, its dual is compact. We can write A asà
U irr. corep. of pA

BpHU q .

For any element x P A we can characterize ∆pxq as the unique element
in AbA that satisfies ∆pxqT � Tx for all T P HompU1, U2 b U3q and all
irreducible corepresentations U1,U2 and U3 of pA. Moreover, we can write
any corepresentation V P AbBpHV q of A as a direct sum of elements
VU P BpHU q b BpHV q where U runs through the irreducible corepresentations
of pA. If ε denotes the trivial corepresentation, then Vε � 1 b 1. Moreover,
VU � p b �qpV q.
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Actions of quantum groups (see [213])

An action of a locally compact quantum group A on a von Neumann algebra N
is a normal �-homomorphism α : N Ñ AbN such that p∆b idq�α � pidbαq�α.
The crossed product von Neumann algebra of N by α is then the von Neumann
algebra A 
 N generated by pA b 1 and αpNq. We identify N and pA with
subalgebras of A 
 N . There is a natural action pα of pA on A 
 N , which is
uniquely defined by pαpaq � p∆paq for a P pA and pαpxq � 1b x for x P N . This
action is called the dual action of α.

If an action α : N Ñ AbN of a locally compact quantum group on a factor
satisfies N 1 XA
N � C � 1, then α is called strictly outer.

Let A be a discrete quantum group that acts via α on a von Neumann algebra
N . We denote A
N byM and as before we identify pA and N with subalgebras
of M . If A is a Kac algebra, N is finite and α preserves a trace τN on N , then
M is also finite. A faithful normal trace on M is given by

pτ b idqpUp1b xqq � δU,ε � τN pxq ,

for all x P N and for all irreducible corepresentations U P pAbBpHU q of pA. For
x P N and U P BpHU qb pA an irreducible corepresentation of pA, we write αU pxq
for the projection of αpxq onto the direct summand BpHU q bN of AbN . For
x P N we have Up1b xqU� � αU pxq.

4.5.2 Corepresentation categories of Kac algebras

Theorem 4.5.1. Let N be a II1 factor, A a discrete quantum group and
α : A Ñ AbN a strictly outer action. Denote by M � A 
 N the crossed
product of N by α and write pA
M for the crossed product by the dual action.
Then BimodpM � pA
Mq � UCorepfinpAcoopq as tensor C�-categories, where
UCorepfinpAcoopq denotes the category of finite dimensional corepresentations
of Acoop.

Proof. We first construct a fully faithful tensor C�-functor F going from
UCorepfinpAcoopq to BimodpM � pA
Mq. Then, we show that it is essentially
surjective.

Step 1. Let V P AbMnpCq be a finite dimensional corepresentation of Acoop, that
is p∆b idqpV q � V13V23. We define a �-homomorphism ψ : M Ñ MnpCq bM
such that

ψpxq � 1b x for all x P N and pidb ψqpUq � U13V12 ,
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where U P BpHU q b pA � Ab pA is an irreducible corepresentation of pA.
Proof of Step 1. We first show that ψ defines a �-homomorphism. This is obvious
on N . In order to prove that ψ is multiplicative on pA �M , we have to check
for all irreducible corepresentations U1, U2, U3 of pA and for every intertwiner
T P HompU1, U2 b U3q the identity

pidb ψqpU2q134pidb ψqpU3q234pT b idq � pT b idqpidb ψqpU1q
holds. We have

pT b idqpidb ψqpU1q � pT b idqU1,13VU1,12

� U2,14U3,24p∆b idqpVU1q123pT b idq

� U2,14U3,24VU2,13VU3,23pT b idq

� U2,14VU2,13U3,24VU3,23pT b idq

� pidb ψqpU2q134pidb ψqpU3q234pT b idq .

We prove that ψ is a homomorphism on algp pA,Nq � �-algp pA,Nq. Using the
fact that Up1b xq � αU pxqU for all x P N and all irreducible corepresentations
U of pA, it suffices to note that

pidb ψqpUqp1b 1b xq � U13V12p1b 1b xq

� U13p1b 1b 1b xqV12

� αU pxq13U13V12

� αU pxq13pidb ψqpUq .
Let us show that ψ is �-preserving. We have

pidb ψqpp b �qpUqq � � pidb ψqpUq

� U13V12

� U13VU,12

� p b �qpUq13p b �qpVU q12

� p b � b �qpU13V12q ,

This shows that ψ is a �-homomorphism on �-algp pA,Nq.
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Let us show that ψ is trace preserving on �-algp pA,Nq. Denote by τ the trace
on M . For an irreducible corepresentation U of pA and x P N we have

pidb τqpUp1b xqq � δU,ετpxq1A ,

by the definition of τ . On the other hand we have

pidb trbτqpidb ψqpUp1b xqq � pidb trbτqpU13V12p1b 1b xqq

� δU,ετpxqpidb trqpVε,12q

� δU,ετpxq1A .

So ψ is trace preserving and hence it extends to a �-homomorphism ψ : M Ñ
MnpCq bM .

Step 2. Define a functor F : UCorepfinpAcoopq Ñ BimodpQ � Q1q such that if
V is a finite dimensional corepresentation of Acoop and ψ the map associated
with it in Step 1, we have F pV q � Hpψq. If T P HompV1, V2q is an intertwiner,
we set F pT q � T b id : HV1 b L2pMq Ñ HV2 b L2pMq. Then F is fully faithful
tensor C�-functor.

Proof of Step 2. It is obvious that F is faithful. In order to show that F is full,
let V1 P AbMmpCq,V2 P AbMnpCq be finite dimensional corepresentations of
Acoop. Denote by ψ1, ψ2 the maps associated with V1 and V2, respectively. Let
T : Cm b L2pMq Ñ Cn b L2pMq be an intertwiner from HpF pV1qq to HpF pV2qq.
Then T P BpCm,Cnq bM satisfies

T p1b xq � Tψ1pxq � ψ2pxqT � p1b xqT for all x P N .

Hence, T P BpCm,Cnq b 1. So, for any irreducible corepresentation U of pA, we
have

V2,12T23 � U�
13U13V2,12T23

� U�
13ψ2pUqT23

� U�
13T23ψ1pUq

� T23U
�
13U13V1,12

� T23V1,12 .

So T comes from an intertwiner from V1 to V2. This shows that F is full.

For an intertwiner T P HompV1, V2q we have F pT�q � F pT q�, so F is a
C�-functor.
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If V1,V2 are finite dimensional corepresentations of Acoop, ψ1, ψ2 and ψ
denote the maps associated with V1, V2 and V1,12V2,13 � V1 b V2 respectively,
then pidb ψqpUq � U14V1,12V2,13 � pid b ψ2q � ψ1pUq, for every irreducible
corepresentation U P BpHU q b pA of pA. So ψ � pid b ψ2q � ψ1. We obtain
F pV1q bM F pV2q � F pV1 b V2q and this unitary isomorphism is natural in V1
and V2. Hence F is a tensor C�-functor.

Step 3. F is essentially surjective.

Proof of Step 3. Let H be a finite index bimodule in BimodpM � pA 
Mq.
Write H � Hpψq for some ψ : M Ñ ppMnpCq bMqp satisfying p P p1bNq1 X
pMnpCq bMq and ψpxq � pp1b xq for all x P N . Since N �M is irreducible,
we have p P MnpCq b 1, so we may assume that p � 1. For an irreducible
corepresentation U of pA, by the same calculation as in Step 1, we obtain

pidb ψqpUqU�
13αU pxq � αU pxqpidb ψqpUqU�

13 ,

for all x P N . Since N is linearly generated by the coefficients of αU pNq, it
follows that

pidb ψqpUqU�
13 � VU,12

for some element in VU P BpHU q bMnpCq � AbMnpCq. Let

V � ð
U irr. corep. of pA

VU P AbMnpCq .

We show that V is a corepresentation of Acoop, i.e. that p∆b idqpV q � V13V23.
It suffices to show for any irreducible corepresentations U1, U2, U3 and any
intertwiner T P HompU1, U2 b U3q that we have

VU2,13VU3,23pT b idq � pT b idqpVU1q .

Indeed, we have

pT b idqpVU1 b 1q � pT b idqpidb ψqpU1qU�
1,13

� pidb ψqpU2q134pidb ψqpU3q234pU2,14U3,24q�pT b idq

� pidb ψqpU2q134V3,23U
�
2,14pT b idq

� pidb ψqpU2q134U
�
2,14V3,23pT b idq

� V2,13V3,23pT b idq .

This shows that V is a corepresentation of A and Hpψq � F pV q.



Chapter 5

On the classification of free
Bogoliubov crossed product
von Neumann algebras by the
integers

This chapter is based on [183]. We consider crossed product von Neumann
algebras arising from free Bogoliubov actions of Z. We describe several
presentations of them as amalgamated free products and cocycle crossed
products and give a criterion for factoriality. A number of isomorphism results
for free Bogoliubov crossed products are proved, focusing on those arising from
almost periodic representations. We complement our isomorphism results by
rigidity results yielding non-isomorphic free Bogoliubov crossed products and
by a partial characterisation of strong solidity of a free Bogoliubov crossed
products in terms of properties of the orthogonal representation from which it
is constructed

5.1 Introduction

With an orthogonal representation pH,πq of a discrete group G, Voiculescu’s
free Gaussian functor associates an action of G on the free group factor
ΓpHq2 � LFdimH (see Section 5.2.1 and [226, Section 2.6]). An action arising
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this way is called a free Bogoliubov action of G. The associated free Bogoliubov
crossed product von Neumann algebras ΓpHq2�G, also denoted by ΓpH,G, πq2,
were studied by several authors [194, 112, 105, 106]. Note that in [194, Section 7]
free Bogoliubov crossed products with Z appear under the name of free Krieger
algebras (see also [193, Section 3] and [112, Section 6]). The classification of
free Bogoliubov crossed products is especially interesting because of their close
relation to free Araki-Woods factors [192, 194]. In the context of the complete
classification of free Araki-Woods factors associated with almost periodic
orthogonal representations of R [192, Theorem 6.6], already the classification
of the corresponding class of free Bogoliubov crossed products becomes an
attractive problem.

Popa initiated his deformation/rigidity theory in 2001 [165, 164, 166, 167, 171].
During the past decade this theory enabled him to prove a large number of
non-isomorphism results for von Neumann algebras and to calculate many
of their invariants. In particular, he obtained the first rigidity results
for group measure space II1 factors in [166, 167]. Moreover, he obtained
the first calculations of fundamental groups not equal to R¡0 in [164] and
of outer automorphisms groups in [117]. Further developments in the
deformation/rigidity theory led Ozawa and Popa to the discovery of II1 factors
with a unique Cartan subalgebra in [155, 156]. Also W�-superrigidity theorems
for group von Neumann algebras [118, 27] and group measure space II1 factors
[177, 173, 174, 114] were proved by means of deformation/rigidity techniques.
In the context of free Bogoliubov actions Popa’s techniques were applied
too. In [165, Section 6], Popa introduced the free malleable deformation of
free Bogoliubov crossed products. This lead in [108] and, using the work of
Ozawa-Popa, in [112, 111, 106] to several structural results and rigidity theorems
for free Araki-Woods factors and free Bogoliubov crossed products. We use the
main result of [112] in order to obtain certain non-isomorphism results for free
Bogoliubov crossed products.

In the cause of the deformation/rigidity theory, absence of Cartan algebras and
primeness were studied too. The latter means that a given II1 factor has no
decomposition as a tensor product of two II1 factors. Ozawa introduced in [153]
the notion of solid II1 factors, that is II1 factors M such that for all diffuse von
Neumann subalgebras A �M the relative commutant A1 XM is amenable. In
[170], Popa used his deformation/rigidity techniques in order to prove solidity
of the free group factors, leading to the discovery of strongly solid II1 factors
in [155, 156]. A II1 factor M is strongly solid if for all amenable, diffuse von
Neumann subalgebras A � M , its normaliser NM pAq2 is amenable too. We
extend the results of [112] on strong solidity of certain free Bogoliubov crossed
products and point out a class of non-solid free Bogoliubov crossed products.

Opposed to non-isomorphism results obtained in Popa’s deformation/rigidity
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theory, there are two known sources of isomorphism results for von Neumann
algebras. First, the classification of injective von Neumann algebras by Connes
[52] shows that all group measure space II1 factors L8pXq �G associated with
free, ergodic, probability measure preserving actions Gñ X are isomorphic to
the hyperfinite II1 factor R. By [151, 55], if H ñ Y is another free, ergodic,
probability measure preserving action of an amenable group, then these actions
are orbit equivalent, meaning that there is a probability measure preserving
isomorphism ∆ : X Ñ Y such that ∆pG � xq � H � ∆pxq for almost every
x P X. By a result of Singer [196], this means that there is an isomorphism
L8pXq �G � L8pY q �G sending L8pXq to L8pY q.
The second source of unexpected isomorphism results for von Neumann algebras
is free probability theory as it was initiated by Voiculescu [223]. More specifically,
we use the work of Dykema on interpolated free group factors and amalgamated
free products. Interpolated free group factors were independently introduced
by Dykema [73] and Rădulescu [181]. If M is a II1 factor, the amplification
of M by t is M t � ppMnpCq bMqp, where p P MnpCq bM is a projection of
non-normalised trace Trbτppq � t . It does not depend on the specific choice
of n and p. The interpolated free group factors can be defined by

LFr � pLFnqt , where r � 1� n� 1
t2

, for some t ¡ 1 and n P N¥2 .

Dykema’s first result on free products of von Neumann algebras in [72] says that
LpFnq �R � LpFn�1q for any natural number n. He developed his techniques
in [73, 71, 74, 75] arriving in [76] at a description of arbitrary amalgamated
free products A �D B with respect to trace-preserving conditional expectations,
where A and B are tracial direct sums of hyperfinite von Neumann algebras
and interpolated free group factors and the amalgam D is finite dimensional.

We combine the work of Dykema with a result on factoriality of certain
amalgamated free products. The first such results for proper amalgamated
free products were obtained by Popa in [162, Theorem 4.1], followed by several
results of Ueda in the non-trace preserving setting [209, 210, 211, 208]. We will
use a result of Houdayer-Vaes [113, Theorem 5.8], which allows for a particularly
easy application in this chapter.

Section 5.3 treats the structure of free Bogoliubov crossed products. We obtain
several different representations of free Bogoliubov crossed products associated
with almost periodic orthogonal representations of Z in Theorem 5.3.3 and
Proposition 5.3.7. We calculate the normaliser and the quasi-normaliser of the
canonical abelian von Neumann subalgebra of a free Bogoliubov crossed product
in Corollary 5.3.9 and address the question of factoriality of free Bogoliubov
crossed products in Corollary 5.3.10. Most of the results in this section are
probably folklore.
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In Section 5.4, we obtain isomorphism results for free Bogoliubov crossed
products associated with almost periodic orthogonal representations. In
particular, we classify free Bogoliubov crossed products associated with
non-faithful orthogonal representations of Z in terms of the dimension of the
representation and the index of its kernel. They are tensor products of a diffuse
abelian von Neumann algebra with an interpolated free group factor.

Theorem 5.A (See Theorem 5.4.3). Let pπ,Hq be a non-faithful orthogonal
representation of Z of dimension at least 2. Let r � 1� pdim π � 1q{rZ : kerπs.
Then

ΓpH,Z, πq2 � L8pr0, 1sqbLFr ,
by an isomorphism carrying the subalgebra LZ of ΓpH,Z, πq2 onto L8pr0, 1sq b
CrZ:kerπs.

For general almost periodic orthogonal representations of Z we can prove that
the isomorphism class of the free Bogoliubov crossed product depends at most on
their dimension and on the concrete subgroup of S1 generated by the eigenvalues
of their complexification. More generally, we have the following result.

Theorem 5.B (See Theorem 5.4.2). The isomorphism class of the free
Bogoliubov crossed product associated with an orthogonal representation π of Z
with almost periodic part πap depends at most on the weakly mixing part of π,
the dimension of πap and the concrete embedding into S1 of the group generated
by the eigenvalues of the complexification of πap.

In contrast to the preceding result, we show later that representations with
almost periodic parts of different dimension can be non-isomorphic.

Theorem 5.C (See Theorem 5.5.1 and Theorem 5.6.4). If λ denotes the left
regular orthogonal representation of Z and π denotes some one dimensional
orthogonal representation, then

Γp 2̀pZq `C,Z, λ` πq2 � Γp 2̀pZq,Z, λq2 � LpF2q � Γp 2̀pZq `C2,Z, λ` 2 � 1q2 .

The next results shows, however, that there are representations whose
complexifications generate isomorphic, but different subgroups of S1 and their
free Bogoliubov crossed products are isomorphic nevertheless.

Theorem 5.D (See Corollary 5.4.5). All faithful two dimensional representa-
tions of Z give rise to isomorphic free Bogoliubov crossed products.

Inspired by the connection between free Bogoliubov crossed products and cores
of Araki-Woods factors, and classification results for free Araki-Woods factors
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[192], Shlyakhtenko asked at the 2011 conference on von Neumann algebras and
ergodic theory at IHP, Paris, whether for an orthogonal representation pπR, HRq
of Z the isomorphism class of ΓpHR,Z, πRq2 is completely determined by the
representation

À
n¥1 π

bn
R up to amplification. The present chapter shows that

this is not the case. We discuss other possibilities of how a classification of
free Bogoliubov crossed products could look like and put forward the following
conjecture in the almost periodic case.

Conjecture 5.A (See Conjecture 5.4.6). The abstract isomorphism class
of the subgroup generated by the eigenvalues of the complexification of an
infinite dimensional, faithful, almost periodic orthogonal representation of Z is
a complete invariant for isomorphism of the associated free Bogoliubov crossed
product.

In Section 5.5, we describe strong solidity and solidity of a free Bogoliubov
crossed product ΓpH,Z, πq2 in terms of properties of π. The main result of [112]
on strong solidity of free Bogoliubov crossed products is combined with ideas of
Ioana [114] in order to obtain a bigger class of strongly solid free Bogoliubov
crossed products of Z.

Theorem 5.E (See Theorem 5.5.2). Let pπ,Hq be the direct sum of a mixing
representation and a representation of dimension at most one. Then ΓpH,Z, πq2
is strongly solid.

Orthogonal representations that have an invariant subspace of dimension two
give rise to free Bogoliubov crossed products, which are obviously not strongly
solid. In particular, all almost periodic orthogonal representations are part
of this class of representations. The next theorem describes a more general
class of representations of Z that give rise to non-solid free Bogoliubov crossed
products. If pπ,Hq is a representation of Z, we say that a non-zero subspace
K ¤ H is rigid if there is a sequence pnkqk in Z such that πpnkq|K converges to
idK strongly as nk Ñ8.

Theorem 5.F (See Theorem 5.5.4). If the orthogonal representation pπ,Hq
of Z has a rigid subspace of dimension two, then the free Bogoliubov crossed
product ΓpH,Z, πq2 is not solid.

We make the conjecture that this theorem describes all non-solid free Bogoliubov
crossed products of the integers.

Conjecture 5.B (See Conjecture 5.5.5). If pπ,Hq is an orthogonal represen-
tation of Z, then the following are equivalent.

• ΓpH,Z, πq2 is solid.
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• ΓpH,Z, πq2 is strongly solid.

• π has no rigid subspace of dimension two.

In Section 5.6, we prove a rigidity result for free Bogoliubov crossed products
associated with orthogonal representations having at least a two dimensional
almost periodic part. Due to the lack of invariants for bimodules over abelian
von Neumann algebras, we can obtain only some non-isomorphism results.

Theorem 5.G (See Theorem 5.6.4). No free Bogoliubov crossed product
associated with a representation in the following classes is isomorphic to a
free Bogoliubov crossed product associated with a representation in the other
classes.

• The class of representations λ`π, where λ is the left regular representation
of Z and π is a faithful almost periodic representation of dimension at
least 2.

• The class of representations λ`π, where λ is the left regular representation
of Z and π is a non-faithful almost periodic representation of dimension
at least 2.

• The class of representations ρ` π, where ρ is a representation of Z whose
spectral measure µ and all of its convolutions µ�n are non-atomic and
singular with respect to the Lebesgue measure on S1 and π is a faithful
almost periodic representation of dimension at least 2.

• The class of representations ρ` π, where ρ is a representation of Z whose
spectral measure µ and all of its convolutions µ�n are non-atomic and
singular with respect to the Lebesgue measure and π is a non-faithful
almost periodic representation of dimension at least 2.

• Faithful almost periodic representations of dimension at least 2.

• Non-faithful almost periodic representations of dimension at least 2.

• The class of representations ρ` π, where ρ is mixing and dim π ¤ 1.



PRELIMINARIES 121

5.2 Preliminaries

5.2.1 Orthogonal representations of Z and free Bogoliubov
shifts

With a real Hilbert space H, Voiculescu’s free Gaussian functor associates a
von Neumann algebra ΓpHq2 � LFdimH [226]. For every vector ξ P H, we
have a self-adjoint element spξq P ΓpHq2 and ΓpHq2 is generated by these
elements. If ξ, η P H are orthogonal then spξq � ispηq is an element with
circular distribution with respect to the trace on ΓpHq2. In particular, the
polar decomposition of spξq � ispηq equals a � u, where a, u are �-free from
each other, a has a quarter-circular distribution and u is a Haar unitary.
The free Gaussian construction ΓpHq2 acts by construction on the full Fock
space CΩ ` À

n¥1H
bn where Ω is called the vacuum vector. It is cyclic

and separating for ΓpHq2 and ΓpHq2Ω � Hbalgn for all n P N. Hence, for
ξ1b � � � b ξn P Hbalgn, there is a unique element W pξ1b � � � b ξnq P ΓpHq2 such
that W pξ1 b � � � b ξnqΩ � ξ1 b � � � b ξn.

The free Gaussian construction is functorial for isometries, so that an orthogonal
representation pπ,Hq of a group G yields a trace preserving action Gñ ΓpHq2,
which is completely determined by g � spξq � spπpgqξq. If ξ1 b � � � b ξn P Hbalgn

and g P G, then g �W pξ1 b � � � b ξnq �W pπpgqξ1 b � � � b πpgqξnq.
An action obtained by the free Gaussian functor is called free Bogoliubov action.
If G ñ ΓpHq2 is the free Bogoliubov action associated with pπ,Hq, then
the representation of G on L2pΓpHq2q a C � 1 is isomorphic with

À
n¥1 π

bn.
The associated von Neumann algebraic crossed product ΓpHq2 � G of a free
Bogoliubov action is denoted by ΓpH,G, πq2. If there is no confusion possible,
we denote ΓpH,G, πq2 by Mπ and the algebra LG � ΓpH,G, πq2 by Aπ.

An orthogonal representation pπ,Hq is called almost periodic if it is the direct
sum of finite dimensional representations. It is called periodic if the map π
has a kernel of finite index in G. We call π weakly mixing, if it has no finite
dimensional subrepresentation. Every orthogonal representation pπ,Hq is the
direct sum of an almost periodic representation pπap, Hapq and a weakly mixing
representation pπwm, Hwmq.
Spectral theory says that unitary representations π of Z correspond to pairs
pµ,Nq, where µ is a Borel measure on S1 and N is a function with values
in N Y t8u called the multiplicity function of π. The measure µ and the
equivalence class of N up to changing it on µ-negligible sets are uniquely
determined by π. Given any orthogonal representation pπ,Hq of Z, denote by
pπC, HCq its complexification. Note that a pair pµ,Nq as above is associated with
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a complexification of an orthogonal representation if and only if µ and N are
invariant under complex conjugation on S1 � C. An orthogonal representation
pπ,Hq is weakly mixing if and only if µ has no atoms. It is almost periodic if
and only if the measure associated with pπC, HCq is completely atomic. In this
case the atoms of µ and the function N together form the multiset of eigenvalues
with multiplicity of πC. Up to isomorphism, an almost periodic representation
π is uniquely determined by this multiset.

5.2.2 Rigid subspaces of group representations

A rigid subspace of an orthogonal representation pπ,Hq of a discrete group G
is a non-zero Hilbert subspace K ¤ H such that there is a sequence pgnqn of
elements in G tending to infinity that satisfies πpgnqξ ÝÑ ξ as nÑ 8 for all
ξ P K. Note that this terminology is borrowed from ergodic theory and has
nothing to do with property (T).

A representation π without any rigid subspace is called mildly mixing. The main
source of mildly mixing representations of groups are mildly mixing actions [190].
A probability measure preserving action Gñ pX,µq has a rigid factor if there
is a Borel subset B � X, 0   µpBq   1 such that lim infgÑ8 µpB∆gBq � 0.
We say that Gñ pX,µq is mildly mixing if it has no rigid factor.

Proposition 5.2.1. Let Gñ pX,µq be a probability measure preserving action
of a group G. Then the Koopman representation G ñ L2

0pX,µq is mildly
mixing if and only if Gñ pX,µq is mildly mixing.

Proof. First assume that the Koopman representation is mildly mixing and
take B � X a Borel subset such that there is a sequence pgnqn in G going to
infinity that satisfies µpB∆gnBq Ñ 0. Consider the function ξ � µpBq �1�1B P
L2

0pX,µq. Then

}ξ � gnξ}22 � }1gnB � 1B}22 � µpB∆gnBq Ñ 0 .

By mild mixing of Gñ L2
0pX,µq, it follows that ξ � 0, so µpBq P t0, 1u. Hence

Gñ pX,µq is mildly mixing.

For the converse implication assume that there is a sequence pgnqn in G tending
to infinity such that there is a unit vector ξ P L2

0pX,µq that satisfies gnξ Ñ ξ.
We have to show that G ñ pX,µq has a rigid factor. Replacing ξ by its
real part, we may assume that it takes only real values. For δ ¡ 0 define
Aδ � tx | ξpxq ¥ δu and Bδ � tx | ξpxq ¡ δu. Since

³
X
ξpxqdµpxq � 0, there is

some δ ¡ 0 such that 0   µpAδq   1.
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Take ε ¡ 0. We have
�
δ1 δ Bδ1 � Aδ, so that we can choose δ1   δ such that

µpBδ1zAδq   ε{4. Take N P N such that for all n ¥ N we have }ξ � gnξ}  
pδ � δ1q � ε{4. Then for all n ¥ N , we have

µpAδ∆gnAδq � µpAδzgnAδq � µpAδzg�1
n Aδq

  µpAδzgnBδ1q � µpAδzg�1
n Bδ1q � ε

2

¤ 1
pδ � δ1q2

�»
AδzgnBδ1

|ξpxq � gnξpxq|2dx�

»
Aδzg�1

n Bδ1

|ξpxq � g�1
n ξpxq|2dx

�
� ε

2

¤ 2
pδ � δ1q2

»
X

|ξpxq � gnξpxq|2dµpxq � ε

2

  ε .

It follows that µpAδ∆gnAδq Ñ 0 as n Ñ 8. So G ñ pX,µq is not mildly
mixing.

5.2.3 Bimodules over von Neumann algebras

Let M , N be von Neumann algebras. An M -N -bimodule is a Hilbert
space H with a normal �-representation of λ : M Ñ BpHq and a normal
anti-�-representation ρ : N Ñ BpHq such that λpxqρpyq � ρpyqλpxq for all
x P M , y P N . If M , N are tracial, then we have MH � MpL2pMq b 2̀pNq�qp
with p P M bBp 2̀pNqq. The left dimension dimM� H of MH is pτM b Trqppq
by definition. Similarly, we define the right dimension dim�N H of HN. We
say that MHN is left finite, if it has finite left dimension, we call it right finite if
it has finite right dimension and we say that H is a finite index M -N -bimodule,
if its left and right dimension are both finite.

If A,B �M are abelian von Neumann algebras and AHB � L2pMq is a finite
index bimodule, then there are non-zero projections p P A, q P B, a finite index
inclusion φ : pA Ñ qB and a non-zero partial isometry v P pMq such that
av � vφpaq for all a P pA. Since φ is a finite index inclusion, we can cut down
p and q so as to assume that φ is an isomorphism.
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5.2.4 The measure associated with a bimodule over an
abelian von Neumann algebra

We describe bimodules over abelian von Neumann algebras, as in [53, V.
Appendix B]. Compare also with [142, Section 3] concerning our formulation. Let
A � L8pX,µq be an abelian von Neumann algebra and AHA an A-A-bimodule
such that λ, ρ : A Ñ BpHq are faithful. Then the two inclusions λ, ρ :
A Ñ BpHq generate an abelian von Neumann algebra A. Writing rνs for
the class of a measure ν and p1, p2 for the projections on the two factors
of X � X, we can identify A � L8pX � X, νq where rνs is subject to
the condition pp1q�prνsq � pp2q�prνsq � rµs. We can disintegrate H with
respect to ν and obtain a decomposition H � ³`

X�X Hx1,x2dνpx1, x2q. Let
N : X �X Ñ NYt8u be the dimension function Hx1,x2 ÞÑ dimC Hx1,x2 . Then
N is unique up to changing it on ν-negligible sets and the triple pX, rνs, Nq
is a conjugacy invariant for AHA in the following sense. Let pX, rνX s, NXq
and pY, rνY s, NY q be triples as before associated with bimodules HX and
HY over A � L8pX,µxq and B � L8pY, µyq, respectively. A measurable
isomorphisms ∆ : pX, rµX sq Ñ pY, rµY sq such that p∆�∆q�prνX sq � rνY s and
NY � p∆�∆q � NX νY -almost everywhere induces an isomorphism θ : AÑ B
and a unitary isomorphism U : HX Ñ HY satisfying

UλXpaq � λY pθpaqqU and UρXpaq � ρY pθpaqqU for all a P A .

Moreover, any such pair pU, θq arises this way. The proof of this fact works
similar to that of [142].

Let AHA be an A-A-bimodule and identify A � L8pX,µq. Denote by pX, rνs, Nq
the spectral invariant of AHA as described in the previous paragraph. If
p � 1Y P A is a non-zero projection, then it follows right away that the spectral
invariant associated with pAppHpqpA equals pY, rν|Y�Y s, N |Y�Y q.
Let Z ñ P be an action of Z on a tracial von Neumann algebra P and
M � P � Z. Let pµ,Nπq denote the spectral invariant of the representation π
on L2pP q a C1 associated with the action of Z on P . Write A � LZ � L8pS1q,
where the identification is given by the Fourier transform. We describe the
spectral invariant pS1, rνs, Nq of the A-A-bimodule L2pMq a L2pAq in terms of
pπ,Nπq.
We first calculate the measure νξbδn on S1 � S1 defined by»

S1�S1
satb dνξbδnps, tq � xuapξ b δnqub, ξ b δny ,



PRELIMINARIES 125

with a, b P Z, ξ P L2pP q a C1 and δn P 2̀pZq the canonical basis element
associated with n P Z. Denote by µξ the measure on S1 defined by»

S1
sa dµξpsq � xπpaqξ, ξy .

We obtain for a, b P Z, ξ P L2pP q a C1 and n P Z»
S1�S1

satb dνξbδnps, tq � xuapξ b δnqub, ξ b δny

� δa,�bxπpaqξ, ξy

� δa,�b

»
S1
sa dµξpsq

�
»

S1�S1
sata�b dpµξ b λqps, tq

�
»

S1�S1
satb dT�pµξ b λqps, tq ,

where T : S1 � S1 Ñ S1 � S1 : ps, tq ÞÑ ps, stq. So νξbδn � T�pµξ b λq for all
ξ P L2pMq a C1 and for all n P Z. It follows that rνs � T�prµb λsq.
We calculate the multiplicity function N of L2pMq a L2pAq in terms of Nπ. Let
Yn, n P NY t8u be pairwise disjoint Borel subsets of S1 such that Nπ|Yn � n
for all n. There is a basis pξn,kq0¤k nPNYt8u of L2pP q a C such that µξn,k is
has support equal to Yn. So ξn,k b δl with l P Z and 0 ¤ k   n P NY t8u is a
basis of L2pMq a L2pAq. Write Zn � T pYn � S1q. Then»

Zn

satb dνξn,kbδlps, tq �
»
Yn�S1

sata�b dpµξn,k b λqps, tq ,

so the support of νξn,kbδl is equal to Zn. As a consequence, N |Zn � n for all
n P NY t8u. We obtain the following proposition.

Proposition 5.2.2. Let pµ,Nq be a symmetric measure with multiplicity
function on S1 having at least one atom and let π be the orthogonal representation
of Z on H � L2

RpS1, µ,Nq given by πp1qf � idS1 � f . Identifying LZ �
L8pS1q via the Fourier transform, the multiplicity function of the bimodule
L8pS1qΓpH,Z, πq2L8pS1q is equal to 8 almost everywhere.

Proof. We have ΓpH,Z, πq2 � ΓpHq2 � Z, where the crossed product is taken
with respect to the free Bogoliubov action of Z on ΓpHq2, which has `n¥1π

bn
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as its associated representation on L2pΓpHq2q a C � 1. If a is an atom of µ, then
also a is one. Denote by χa the character of Z defined by pZ � S1. We have
π � π b pχaqn b pχaqn ¤ πb2n. As a consequence, the multiplicity function of
`n¥1π

bn is equal to 8 almost everywhere. So, by the calculations preceding
the remark, this is also the case for the multiplicity function of the bimodule
L8pS1qL2pΓpH,Z, πq2qL8pS1q.

Proposition 5.2.3. The disintegration of rνs with respect to the projection
onto the first component of S1 � S1 is given by rνs � ³rµ � δssdλpsq.
Proof. Let Y,Z � S1 be Borel subsets and denote by pµsqsPS1 the constant field
of measures with value µ.

pT�
�»

S1
µs dλpsq



qpY � Zq �

»
Y

µpZ � s�1q dλpsq

�
»
Y

µ � δspZq dλpsq

� p
»

S1
µ � δs dλpsqqpY � Zq .

This finishes the proof.

5.2.5 Amalgamated free products over finite dimensional
algebras

Let R2 denote the class of finite direct sums of hyperfinite von Neumann
algebras and interpolated free group factors, equipped with a normal, faithful
tracial state. In [76, Theorem 4.5], amalgamated free products of elements of
R2 over finite dimensional tracial von Neumann subalgebras were shown to be
in R2 again. Moreover, their free dimension in the sense of Dykema [75] was
calculated in terms of the free dimension of the factors and of the amalgam of
the amalgamated free product. We explain the free dimension and Theorem 4.5
of [76].

The free dimension of a set of generators of a von Neumann algebra M P R2 is
used to keep track of the parameter of interpolated free group factors. If an
interpolated free group factor has a generating sets of free dimension r, then it
is isomorphic to LFr. Following [76], we define the class Fd � R2, d P R¡0 as
the class of von Neumann algebras

M � D `à
iPI

piLFri `
à
jPJ

qjMnj pCq ,
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where

• pi is the unit of LFri and qj the unit of Mnj pCq,

• ti � τM ppiq, sj � τM pqjq
nj

and D is a diffuse hyperfinite von Neumann
algebra and

• 1�°
i t

2
i pri � 1q �°

j s
2
j � d.

Theorem 4.5 of [76] says that if M � M1 �A M2 with M1,M2 P R2 and A a
finite dimensional tracial von Neumann algebra, then M P R2. Moreover, if
M1 P Fd1 , M2 P Fd2 and A P Fd, then M P Fd1�d2�d. We will use the following
special case.

Theorem 5.2.4 (See Theorem 4.5 of [76]). Let M1 P Fd1 and M2 P Fd2

and A P Fd a common finite dimensional subalgebra of M1 and M2. If M �
M1 �AM2 is a non-amenable factor, then M � LFr with r � d1 � d2 � d.

We will use this result in combination with a special case Theorem 5.8 of [113].

Theorem 5.2.5 (See Theorem 5.8 of [113]). Let M1, M2 be diffuse von
Neumann algebras and A a common finite dimensional subalgebra. If ZpM1q X
ZpM2q X ZpAq � C1, then M1 �AM2 is a non-amenable factor.

5.2.6 Deformation/Rigidity

Let A � M be an inclusion of von Neumann algebras. The normaliser of
A in M , denoted by NM pAq2, is the von Neumann algebra generated by all
unitaries u PM satisfying uAu� � A. The quasi-normaliser of A in M is the
von Neumann algebra QNM pAq2 generated by all elements x P M such that
there are a1, . . . , an and b1, . . . , bm satisfying Nx � °

i aiN and xN � °
iNbi.

The following notion was introduced in [166, Theorem 2.1 and Corollary 2.3]. If
M is a tracial von Neumann algebra, A,B �M are von Neumann subalgebras,
we say that A embeds into B inside M if there is a right finite A-B-subbimodule
of L2pMq. In this case, we write A  M B. If every A-M -subbimodule of L2pMq
contains a right finite A-B-subbimodule, then we say that A fully embeds into
B inside M and write A  f

M B.

If A,B � pM, τq is an inclusion of tracial von Neumann algebras, we say that
A is amenable relative to B inside M , if there is an A central state ϕ on the
basic construction xM, eBy such that ϕ|M � τ . If A is amenable relative to an
amenable subalgebra, then it is amenable itself.
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We will use the following theorem from [112]. It is proven there for unital
von Neumann subalgebras only, but the same proof shows, that it’s true for
non-unital von Neumann subalgebras.

Theorem 5.2.6 (Theorem 3.5 of [112]). Let G be an amenable group with
an orthogonal representation pπ,Hq and write M � ΓpH,G, πq2. Let p P M
be a non-zero projection and P � pMp a von Neumann subalgebra such that
P ¢M LG. Then NpMppP q2 is amenable.

Since we need full embedding of subalgebras in this chapter, let us deduce a
corollary of the previous theorem.

Corollary 5.2.7 (See Theorem 3.5 of [112]). Let G be an amenable group with
an orthogonal representation pπ,Hq and write M � ΓpH,G, πq2. Let P �M be
a von Neumann subalgebra such that NM pP q2 has no amenable direct summand.
Then P  f

M LG.

Proof. Take P �M as in the statement and let us assume for a contradiction
that P ¢f

M LG. Let p P P 1XM be the maximal projection such that pP ¢M LG.
Then p P ZpNM pP q2q. By [166, Lemma 3.5], we have NpMpppP q2 � pNM pP q2p.
By Theorem 5.2.6, NpMpppP q2 is amenable. So NM pP q2 has an amenable direct
summand. This is contradiction.

The next theorem, due to Vaes, allows us to obtain from intertwining bimodules
a much better behaved finite index bimodule.

Proposition 5.2.8 (Proposition 3.5 of [216]). Let M be a tracial von Neumann
algebra and suppose that A,B �M are von Neumann subalgebras that satisfy
the following conditions.

• A  M B and B  f
M A.

• If H ¤ L2pMq is an A-A bimodule with finite right dimension, then
H ¤ L2pQNM pAq2q.

Then there is a finite index A-B-subbimodule of L2pMq.

Deformation/Rigidity for amalgamated free products

We will make use of the following results, which control relative commutants in
amalgamated free products.
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Theorem 5.2.9 (See Theorem 1.1 of [117]). Let M � M1 �A M2 be an
amalgamated free product of tracial von Neumann algebras and p P M1 a
non-zero projection. If Q � pM1p is a von Neumann subalgebra such that
Q ¢M1 A, then Q1 X pMp � Q1 X pM1p.

Theorem 5.2.10 (See Theorem 6.3 in [114]). Let M � M1 �A M2 be an
amalgamated free product of tracial von Neumann algebras and p P M . Let
Q � pMp an arbitrary von Neumann subalgebra and ω a non-principal ultrafilter.
Denote by B the von Neumann algebra generated by Aω and M . One of the
following statements is true.

• Q1 X ppMpqω � B and Q1 X ppMpqω  Mω Aω,

• NpMppQq2  Mi, for some i P t1, 2u or
• Qe is amenable relative to A for some non-zero projection e P

ZpQ1 X pMpq.

Also, we will need one result on relative commutants in ultrapowers.

Lemma 5.2.11 (See Lemma 2.7 in [114]). Let M be a tracial von Neumann
algebra, p PM a non-zero projection, P � pMp and ω a non-principal ultrafilter.
There is a decomposition p � e�f , where e, f P ZpP 1XppMpqωqXZpP 1XpMpq
are projections such that

• epP 1X ppMpqωq � epP 1X pMpq and this algebra is completely atomic and

• fpP 1 X ppMpqωq is diffuse.

A tracial inclusion B �M of von Neumann algebras is called mixing if for all
sequences pxnqn in the unit ball pBq1 that go to 0 weakly and for all y, z PMaB,
we have

}EBpyxnzq}2 Ñ 0 if nÑ8 .

If a subalgebra is mixing, we can control the normaliser of algebras embedding
into it.

Lemma 5.2.12 (See Lemma 9.4 in [114]). Let B �M be a mixing inclusion
of tracial von Neumann algebras. Let p PM be a projection and Q � pMp. If
Q  M B, then NM pQq2  M B.

Finally, we will use two theorems on intertwining in amalgamated free products
from the work of Ioana [114]. This theorem is stated in [114] for unital inclusions
into amalgamated free products, but it remains valid in the more general case.
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Theorem 5.2.13 (See Theorem 1.6 in [114]). Let M � M1 �A M2 be an
amalgamated free product of tracial von Neumann algebras, p PM a projection
and Q � pMp an amenable von Neumann subalgebra. Denote by P � NpMppQq2
the normaliser of Q inside pMp and assume that P 1 X ppMpqω � Cp for some
non-principal ultrafilter ω. Then, one of the following holds.

• Q   A,

• P  Mi, for some i P t1, 2u or
• P is amenable relative to A.

Theorem 5.2.14 (See Theorem 9.5 in [114]). Let B �M be a mixing inclusion
of von Neumann algebras. Take a non-principal ultrafilter ω, a projection p PM
and let P � pMp be a von Neumann subalgebra such that P 1XppMpqω is diffuse
and P 1 X ppMpqω  Mω Bω. Then P  M B.

5.3 General structure of ΓpH,Z, πq2

Recall that we write Mπ for ΓpH,Z, πq2. The decomposition of orthogonal
representations into almost periodic and weakly mixing part, also gives rise to
a decomposition of their free Bogoliubov crossed products.

Remark 5.3.1. Let pπ,Hq be an orthogonal representation of a discrete group
G. Then

ΓpHq2 � ΓpHapq2 � ΓpHwmq2

and so we get a decomposition

Mπ � ΓpHq2 �G � pΓpHapq2 �Gq �LG pΓpHwmq2 �Gq .

More generally, if π �À
i πi, then Mπ � �LG,iMπi .

5.3.1 ΓpH,Z, πq2 for almost periodic representations

If not mentioned explicitly, π denotes an almost periodic orthogonal
representation of Z in this section. Recall that an irreducible almost periodic
orthogonal representation of Z has dimension 1 if and only if its eigenvalue is 1
or �1. In all other cases, it has dimension 2 and its complexification has a pair
of conjugate eigenvalues λ, λ P S1zt1,�1u.
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Notation 5.3.2. We denote by LZ �λ Z, λ P S1 the crossed product by the
action of Z on LZ where 1 P Z acts by multiplying the canonical generator
of LZ with λ. This is isomorphic to the crossed products L8pS1q �λ Z and
Z
λ L8pS1q, where Z acts on S1 by rotation by λ. Moreover, 1b LZ is carried
onto 1b LZ and 1b L8pS1q, respectively, under this isomorphism.

Theorem 5.3.3. Let π be an almost periodic orthogonal representation of Z.
Let λi, λi, 0 ¤ i   n1 P N Y t8u be an enumeration of all eigenvalues in
S1zt1,�1u of the complexification of π. Denote by n2 and m0 the multiplicity of
�1 and 1, respectively, as an eigenvalues of π. Note that dim π � 2n1�n2�m0
and write n � n1 � n2, m � n1 �m0. Then

Mπ � pLFmbLZq �1bLZ pLFn �α Zq

� pLFmbL8pS1qq �1bL8pS1q pFn 
β L8pS1qq ,
where, denoting by gi, 0 ¤ i   n1, and hi, 0 ¤ i   n2, the canonical basis of
Fn1�n2 � Fn

• αp1q acts on ugi by multiplication with λi for 0 ¤ i   n1,

• αp1q acts on uhi by multiplication with �1 for 0 ¤ i   n2,

• βpgiq acts on S1 by multiplication with λi for 0 ¤ i   n1,

• βphiq acts on S1 by multiplication with �1 for 0 ¤ i   n2.

Moreover, the subalgebras ΓpHπq2 �Mπ and

LpFm�nq � pLFmbLZq �1bLZ pLFn �α Zq
are identified under this isomorphism and so are the subalgebras LZ and L8pS1q,
respectively.

Proof. If π is the trivial representation, then Mπ � LFdimπbLZ. If π is the
one dimensional representation with eigenvalue �1, then

pAπ �Mπq � p1b LZ � LZ��1 Zq .
Let π be an irreducible two dimensional representation of Z with eigenvalues
λ, λ P S1 of its complexification. We show that

Mπ � pLZbLZq �1bLZ pLZ�λ Zq
where the inclusion 1 b LZ � pLZbLZq �1bLZ pLZ �λ Zq is identified with
Aπ �Mπ under this isomorphism. Indeed, let ξ, η P H be orthogonal such that



132 ON THE CLASSIFICATION OF FREE BOGOLIUBOV CROSSED PRODUCT VON NEUMANN
ALGEBRAS BY THE INTEGERS

ξ � iη is an eigenvector with eigenvalue λ for the complexification of π. Write
c � spξq � ispηq. Then c is a circular element in Mπ such that απp1qc � λc.
Let c � ua be the polar decomposition. As explained in Section 5.2.1, u is a
Haar unitary and a has quarter-circular distribution and they are �-free from
each other. Moreover, απp1qa � a and thus απp1qu � λu, by uniqueness of
the polar decomposition. So the von Neumann algebra generated by a, u and
LZ is isomorphic to pLZbLZq �1bLZ pLZ� LZq and Aπ is identified with the
subalgebra 1 b LZ. This gives the first isomorphism in the statement of the
theorem. Since LZ�λ Z � Z
λ L8pS1q sending 1bLZ onto 1bL8pS1q via the
Fourier transform, we also obtain the second isomorphism in the statement of
the theorem.

The case of a general almost periodic orthogonal representation π follows by
considering its decomposition into irreducible components as in Remark 5.3.1.
Indeed, denote by

π � à
0¤i n1

πi,c `
à

0¤i n2

πi,�1 `
à

0¤i m0

πi,1

the decomposition of π into irreducible components. Here πi,c has dimension
2 with eigenvalues λi, λi of pπi,cqC and πi,�1 has eigenvalue �1 and πi,1 is the
trivial representation. Then

Mπ � p�0¤i n1Mπi,cq �Aπ p�0¤i n2,AMπi,�1q �Aπ p�0¤i m0,AMπi,cq

� �
�0¤i n1,1bL8pS1qpLZb L8pS1qq �1bL8pS1q pZ
λi L8pS1qq�
�1bL8pS1q

�
�0¤i n2,1bL8pS1qpZ
�1 L8pS1qq�

�1bL8pS1q
�
�0¤i m0,1bL8pS1qpLZb L8pS1qq�

� pLFn1�m0bL8pS1qq �1bL8pS1q pFn1�n2 
β L8pS1qq

� pLFmbL8pS1qq �1bL8pS1q pFn 
β L8pS1qq

and this isomorphism carries Aπ � LZ onto L8pS1q.
Corollary 5.3.4. Aπ is regular inside Mπ.

Proof. By Theorem 5.3.3, we know that

Mπ � pLFmbL8pS1qq �1bL8pS1q pFn 
β L8pS1qq ,

and Aπ is sent onto 1b L8pS1q under this isomorphism. It follows immediately
that Aπ �Mπ is regular.
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Note that in Theorem 5.3.3 the action of Fm on S1 is not free.

Proposition 5.3.5. Adopting the notation of Theorem 5.3.3, the relative
commutant of L8pS1q in pLFmbL8pS1qq�1bL8pS1q pFn
L8pS1qq is LGbL8pS1q,
where G � Fm � kerπ and π : Fn Ñ S1 sends a generator gi to λi and hi to �1.

Proof. It is clear that the algebra generated by the elements ug with g P G
is part of the relative commutant of L8pS1q in Mπ, so we have to prove the
other inclusion. Let x P L8pS1q1 XMπ and write x � °

kPZ xkuk the Fourier
decomposition with respect to the action of Z on ΓpHπq2. Then xk P LZ1XMπ,
so we can assume that x P ΓpHπq2 � LpFm�nq. Write x � °

gPFm�n
agug with

ag P C. Since for all g the action of αp1q leaves Cug invariant, x is fixed by α if
and only if it has only coefficients in G. This proves the lemma.

Corollary 5.3.6. The von Neumann algebra Mπ is factorial if and only if π
is faithful.

Proof. Let π be a non-faithful representation and take g P Z such that πpgq � id.
Then ug P LZ is central in Mπ. For the converse implication, note that π is
faithful if and only if the eigenvalues of πC generate an infinite subgroup of
S1. Any central element x of Mπ must lie in LGbLZ and hence in LZ, since
G is a free group. Writing LFn � Z � Fn 
 L8pS1q as in Theorem 5.3.3, the
assumption implies that the action of Fn on L8pS1q is ergodic. So x P C1.

Using Proposition 5.3.5, we can derive a representation of Mπ as a cocycle
crossed product of LGbLZ by the group K � S1 generated by the eigenvalues of
πC. For any element k P K choose an element gk P Fn such that αp1qugk � kugk .
Define a G valued 2-cocycle Ω on K by

Ωpk, lq � gklg
�1
l g�1

k .

Then K acts on G by conjugation and on LZ by k � u1 � k � u1. Note that if K
is cyclic and infinite, then we can choose Ω to be trivial. In this case, denote by
g1, g2, . . . a basis of Fm�n such that ug1 acts by rotation on S1 and g2, g3, . . .
commute with Aπ. We see that the elements gk1gig�k1 , i ¥ 2, k P Z are a free
basis of G. So K acts by shifting a free basis of G. This proves the following
proposition.

Proposition 5.3.7. There is an isomorphism pAπ � Mπq � p1 b L8pS1q �
K 
Ω pLGbL8pS1qqq. In particular, if π is two dimensional and faithful, then
Mπ � Z 
 pLF8bL8pS1qq, where Z acts on F8 by shifting the free basis and
on S1 by multiplication with a non-trivial eigenvalue of πC.
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5.3.2 Aπ-Aπ-bimodules in L2pMπq

If π is weakly mixing, it is known [214, Proof of Theorem D.4] that every right
finite Aπ-Aπ-bimodule is contained in L2pAπq. More generally, we have the
following proposition.

Proposition 5.3.8. Let pπ,Hq be an orthogonal representation of Z and let
Mπ � Map �Aπ Mwm be the decomposition of Mπ into almost periodic and
weakly mixing part. Then every right finite Aπ-Aπ-bimodule in L2pMπq lies in
L2pMapq.

Proof. By Lemma D.3 in [214], we have to prove that there is a sequence of
unitaries pukqk in A tending to 0 weakly such that for all x, y P M aMap
we have }EApxuny�q}2 Ñ 0. It suffices to consider x � wpξ1 b � � � b ξnq, y �
wpη1 b � � � b ηmq for some ξ1 b � � � b ξnH

bn, η1 b � � � b ηm P Hbm such that at
least one ξi and one ηj lie in Hwm. Take a sequence pgkqk going to infinity in Z
such that xπpgkqξ, ηy Ñ 0 for all ξ, η P Hwm. Then

}EApxugky�q}2 � }EApwpξ1 b � � � ξnqwpπpgkqη1 b � � � b πpgkqηmq�qugk}2
� |τpwpξ1 b � � � ξnqwpπpgkqη1 b � � � b πpgkqηmq�q|

� xξ1 b � � � ξn, πpgkqη1 b � � � b πpgkqηmqy

� δn,m � xξ1, πpgkqη1y � � � xξn, πpgkqηny

ÝÑ 0 .

This finishes the proof.

As an immediate consequence, we obtain the following corollaries.

Corollary 5.3.9. Let π be an orthogonal representation of Z. The
quasi-normaliser and the normaliser of Aπ �Mπ are equal toMap. In particular,
A1π XMπ � LGbAπ, where G as defined in Proposition 5.3.5 is isomorphic to
a free group.

Proof. This follows from Proposition 5.3.8 and Corollary 5.3.4.

Corollary 5.3.10. If π is an orthogonal representation of Z, then Mπ is
factorial if and only if π is faithful.

Proof. This follows from Proposition 5.3.8 and Corollary 5.3.6.
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Remark 5.3.11. Note that Corollary 5.3.10 also follows directly from Theorem
5.1 of [112].

5.4 Almost periodic representations

In this section, we prove that the isomorphism class ofMπ for an almost periodic
orthogonal representation π of the integers depends at most on the concrete
subgroup of S1 generated by the eigenvalues of the complexification of π. We
also classify non-faithful almost periodic orthogonal representations, that is
periodic orthogonal representations, in terms of their kernel and their dimension.

5.4.1 Isomorphism of free Bogoliubov crossed products of
almost periodic representations depends at most on
the subgroup generated by the eigenvalues of their
complexifications

The following lemma will be used extensively in the proof of Theorem 5.4.2.

Lemma 5.4.1. Let S be any set and xs, s P S a free basis of FS. Let I � S
and ws, s P I be words with letters in txs | s P SzIu. Then ys � xsws, s P I
together with ys � xs, s P SzI form a basis of FS.

Proof. It suffices to show that the map FS Ñ FS : xs ÞÑ ys has an inverse. This
inverse is given by the map

FS Ñ FS : xs ÞÑ
#
xsw

�1
s , if s P I

xs, otherwise.

Theorem 5.4.2. Let π, ρ be orthogonal representations of Z such that

• their almost periodic parts have the same dimension,

• the eigenvalues of their complexifications generate the same concrete
subgroup of S1 and

• their weakly mixing parts are isomorphic.

Then Mπ �Mρ via an isomorphism that is the identity on Aπ � LZ � Aρ.
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Proof. By the amalgamated free product decomposition Mπ �Map �Aπ Mwm
of Remark 5.3.1, it suffices to consider almost periodic representations. Denote
by G the subgroup of S1 generated by the eigenvalues of the complexification
of π. We may assume that the number of eigenvalues in e2πip0, 12 q of the
complexification of π is larger than the one of ρ. Denote by λi P e2πip0, 12 q, 0 ¤
i   n1, n1 P NY t8u and λi, 0 ¤ i   n1 the eigenvalues of the complexification
of π that are not equal to 1 or �1. Denote by n2,m0 P NYt8u the multiplicity
of �1 and 1, respectively, as eigenvalues of π. By Theorem 5.3.3, we have
Mπ � Fdimπ 
 L8pS1q, where Fdimπ has a basis consisting of

• elements xi, 0 ¤ i   n1 acting on S1 by multiplication with λi,

• elements yi, 0 ¤ i   n1 acting trivially on S1,

• elements zi, 0 ¤ i   n2 acting on S1 by multiplication with �1 and

• elements wi, 0 ¤ i   m0 acting trivially on S1.

Denote by µi P e2πip0, 12 q, 0 ¤ i   l1 P N Y t8u the non-trivial eigenvalues
of the complexification of ρ that lie in the upper half of the circle and by
l2, k0 P NYt8u the multiplicity of �1 and 1, respectively, as an eigenvalue of ρ.
Since dim π � dim ρ, we have 2 � l1 � l2 � k0 � 2 � n1 � n2 �m0. We will find a
new basis ri p0 ¤ i   l1q, si p0 ¤ i   l1� k0q, ti p0 ¤ i   l2q of Fdimπ such that

• ri, 0 ¤ i   l1, acts by multiplication with µi on S1,

• si, 0 ¤ i   k0 � l1, acts trivially on S1 and

• ti, 0 ¤ i   l2, acts by multiplication with �1 on S1.

Invoking Theorem 5.3.3, this suffices to finish the proof.

In what follows, we will apply Lemma 5.4.1 repeatedly. Replace the basis
elements yi, 0 ¤ i   n1 by ỹi � yixi for 0 ¤ i   n1. Then ỹi acts on S1

by multiplication with µi, 0 ¤ i   n1. Recall that we assumed l1 ¤ n1.
Since the subgroups of S1 generated by the eigenvalues of the complexifications
of π and ρ agree, for every 0 ¤ i   l1 there are elements ai,1 . . . , ai,α P Z,
0 ¤ ji,1, . . . , ji,α   n1 and ai,0 P t0, 1u such that

µi � λ
ai,1
j1

� � � λai,αjα
� p�1qai,0 ,

where ai,0 � 0 if �1 is not an eigenvalue of π. Replacing xi, 0 ¤ i   l1 by

ri � xiỹ
�1
i ỹ

ai,1
ji,1

� � � ỹai,αpiqji,αpiq
� zai,01 ,
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we obtain a new basis of Fdimπ consisting of ri p0 ¤ i   l1q, xi pl1 ¤ i   n1q,
ỹi p0 ¤ i   n1q, zi p0 ¤ i   n2q and wi p0 ¤ i   m0q.
We distinguish whether �1 in an eigenvalue of ρ or not. If �1 is no eigenvalue
of ρ, we produce elements si p0 ¤ i   pn1 � l1q � n1 � n2 �m0q acting trivially
on S1, where we put n1 � l1 � 0, if l1 � n1 � 8. Replace xi by xiỹ

�1
i for

l1 ¤ i   n1 and then multiply ỹi, 0 ¤ i   n1 and zi, 0 ¤ i   n2 from the
right with words in ri, 0 ¤ i   l1 so as to obtain these new basis elements
si p0 ¤ i   pn1 � l1q � n1 � n2 � m0q. Since dim π � 2n1 � n2 � m0 �
l1 � pn1 � l1q � n1 � n2 �m0 and l2 � 0, we found a basis ri p0 ¤ i   l1q, si
p0 ¤ i   l1 � k0q of Fdimπ acting on S1 as desired. This finishes the proof in
the case �1 is no eigenvalue of ρ.

Now assume that �1 is an eigenvalue of ρ. We distinguish three further cases.
Case l1   n1: There are elements a1 . . . , aα P Z, 0 ¤ i1, . . . , iα   n1 and
a0 P t0, 1u such that

�1 � λa1
i1
� � � λaαiα � p�1qa0 ,

where a0 � 0 if �1 is not an eigenvalue of π. Replace xl1�1 by

t1 � xl1�1ỹ
�1
l1�1ỹ

a1
i1
� � � ỹaαiα za0

1 .

Case l1 � n1 and �1 is an eigenvalue of π: Put t1 � z1.
Case l1 � n1 and �1 is no eigenvalue of π: Since 2n1 �m0 � 2l1 � l2 � k0,
in this case, π has a trivial subrepresentation of dimension 1 or π is infinite
dimensional. Hence, we may assume that m ¥ 1, since all yi, 0 ¤ i   n1 act
trivially on S1. There are elements a1 . . . , aα P Z, 0 ¤ i1, . . . , iα   n1 such that

�1 � λa1
i1
� � � λaαiα .

Put
t1 � w1ỹ

a1
i1
� � � ỹaαiα .

In all three cases, we obtain a basis of Fdimπ with elements ri p0 ¤ i   l1q,
possibly t1 and some other elements such that

• ri, 0 ¤ i   l1, acts by multiplication with µi on S1,

• t1 acts by multiplication with �1 on S1 and

• all other elements of the basis act on S1 by multiplication with some
element in G � S1.

We can multiply the elements different from ri, p0 ¤ i   l1q, and t1 in the
basis by some word in the letters ri, 0 ¤ i   l1 and t1 in order to obtain a



138 ON THE CLASSIFICATION OF FREE BOGOLIUBOV CROSSED PRODUCT VON NEUMANN
ALGEBRAS BY THE INTEGERS

basis ri p0 ¤ i   l1q, si p0 ¤ i   dim π � l1 � 1q, t1 or ri p0 ¤ i   l1q, si
p0 ¤ i   dim π � l1q where all elements si act trivially on S1. We used the
convention dim π � l1 � 8, if l1 � dim π � 8. If l1 � k0   8, replace si,
pl1 � k0 ¤ i   l1 � k0 � l2 � 1q by ti�k�2 � si � t1, in order to obtain a basis
ri p0 ¤ i   l1q, si p0 ¤ i   l1 � k0q, ti p0 ¤ i   l2q of Fdimπ acting on S1 as
desired. If l1 � k0 � 8, then replace l2-many si by sit1 so as to obtain the new
basis ri p0 ¤ i   l1q, si p0 ¤ i   l1 � k0q, ti p0 ¤ i   l2q of Fdimπ acting on S1

as desired. This finished the proof.

5.4.2 The classification of free Bogoliubov crossed products
associated with periodic representations of the integers
is equivalent to the isomorphism problem for free group
factors

The classification of free Bogoliubov crossed products associated with
non-faithful, that is periodic, orthogonal representations of Z implies a solution
to the isomorphism problem for free group factors. For example, if 1 denotes
the trivial orthogonal representation of Z, we have Mn�1 � LFnbLZ. So,
proving whether Mn�1 �Mm�1 or not for different n and m amounts to solving
the isomorphism problem for free group factors. More generally, we have the
following result.

Theorem 5.4.3. Let π be a periodic orthogonal representation of the integers.
If π is trivial, then Aπ � Mπ is isomorphic to an inclusion 1 b L8pr0, 1sq �
LFdimπbL8pr0, 1sq. If π is one dimensional and non-trivial, then pAπ �Mπq �
pC2 b 1 b L8pr0, 1sq � M2pCq b L8pr0, 1sq b L8pr0, 1sqq. If π has dimension
at least 2, let T be the index of the kernel of π in Z. Then pAπ � Mπq �
pCT b L8pr0, 1sq � LFrbL8pr0, 1sqq, where LFr is an interpolated free group
factor with parameter

r � 1� 1
T
pdim π � 1q .

Proof. The case where π is trivial, follows directly from the definition of
ΓpH,Z, πq2. To prove all other cases, by Theorem 5.4.2, it suffices to consider
representations π � π0`n�1 with π0 irreducible and non-trivial and n P NYt8u.
We first consider irreducible representations. The case of π one dimensional
is immediately verified from the definition of Mπ � ΓpH,Z, πq2. If π has
dimension 2 and is irreducible denote by λ � e

2πi
T and λ � e�

2πi
T , with
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T � rZ : kerπs P N¥2, the eigenvalues of πC. Then

Mπ � pLZbLZq �1bLZ pLZ�λ Zq

� pLZbCTbL8pr0, 1sqq �1bCTbL8pr0,1sq pL8pr0, 1sqbMT pCqbL8pr0, 1sqq

� ppLZbCT q �1bCT pL8pr0, 1sqbMT pCqqqbL8pr0, 1sq .

Since pLZbCT q�1bCT pL8pr0, 1sqbMT pCqq is a non-amenable factor by Theorem
5.2.5, Theorem 5.2.4 shows that

ppLZbCT q �1bCT pL8pr0, 1sqbMT pCqqq � LFr

with
r � 1� 1� p1� 1

T
q � 1� 1

T
pdim π � 1q .

Moreover,

pAπ �Mπq � p1b CTbL8pr0, 1sq � ppLZbCT q�1bCT

pL8pr0, 1sqbMT pCqqqbL8pr0, 1sqq

� pCT b L8pr0, 1sq � LFrbL8pr0, 1sqq .

Consider now π � π0 ` n � 1 for an irreducible, non-trivial and non-faithful
representation of dimension two π0. The case where π0 is of dimension one
and has eigenvalue �1 is similar, but simpler. Let T � rZ : kerπ0s P N¥2 and
n P NY t8u. Let r0 � 1� 1

T . Then Theorems 5.2.4 and 5.2.5 imply that

Mπ0`n�τ � pLFnbLZq �1bLZ�CTbL8pr0,1sq pLFr0bL8pr0, 1sqq

� pLFn b CT �1bCT LFr0qbL8pr0, 1sq

� LFr b L8pr0, 1sq ,

with
r � 1� 1

T
pn� 1q � r0 � p1� 1

T
q � 1

T
pdimpπ0 ` n � 1q � 1q .

Also
pAπ �Mπq � pCT b L8pr0, 1sq � LFrbL8pr0, 1sqq

and this finishes the proof.
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5.4.3 A flexibility result for representations with one pair of
non-trivial eigenvalue

In this section, we will show that all free Bogoliubov crossed products associated
with almost periodic orthogonal representations of Z with a single non-trivial
irreducible component, which is faithful, are isomorphic.

Proposition 5.4.4. Let πi for i P t1, 2u be almost periodic orthogonal
representations of Z having the same dimension. Assume that their
complexifications pπiqC each have a single pair of non-trivial eigenvalues
λi, λi P e2πiRzQ with any multiplicity. Then Mπ1 � Mπ2 by an isomorphism,
which carries Aπ1 onto Aπ2 .

Proof. By Theorem 5.4.2 is suffices to consider the case where the eigenvalue
λi of pπiqC has multiplicity one. Theorem 5.3.3 shows that

Mπ1 � pLFdimπ1�1 b L8pS1qq �1bL8pS1q pZ
λi L8pS1qq ,

by an isomorphism, which caries Aπi onto L8pS1q. Taking an orbit equivalence
of the ergodic hyperfinite II1 equivalence relations induced by Z

λ1
ñ S1 and

Z
λ2
ñ S1, we obtain an isomorphism Z 
λ1 L8pS1q � Z 
λ2 L8pS1q, which

preserves L8pS1q globally. This can be extended to an isomorphismMπ1 �Mπ2 ,
which carries Aπ1 onto Aπ2 .

Corollary 5.4.5. All faithful two dimensional representations of Z give rise to
isomorphic free Bogoliubov crossed products.

5.4.4 Some remarks on a possible classification of Bogoli-
ubov crossed products associated with almost periodic
orthogonal representations

In Theorem 5.4.2 we showed that the isomorphism class of free Bogoliubov
crossed products associated with almost periodic orthogonal representations of
Z depends at most on the concrete subgroup of S1 generated by the eigenvalues
of its complexification. However, Theorem 5.4.3 and Proposition 5.4.4 both show
that there are orthogonal representations π, ρ of Z such that these subgroups
of S1 are not equal and still they give rise to isomorphic free Bogoliubov
crossed products. This answers a question of Shlyakhtenko, asking whether a
complete invariant for the isomorphism class of the free Bogoliubov crossed
products associated with an orthogonal representation π of Z is `n¥1π

bn

up to amplification. By Theorem 5.4.3, the classification of free Bogoliubov
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crossed products associated with non-faithful orthogonal representations of
Z is equivalent to the isomorphism problem for free group factors. However,
assuming that Mπ is a factor, i.e. that π is faithful, the abstract isomorphism
class of the group generated by the eigenvalues of the complexification of π could
be an invariant. Due to the fact that the isomorphisms found in Theorem 5.4.3
preserve the subalgebra Aπ �Mπ for non-faithful orthogonal representations,
we believe that this abstract group is indeed an invariant for infinite dimensional
representations.

Conjecture 5.4.6. The abstract isomorphism class of the subgroup generated by
the eigenvalues of the complexification of an infinite dimensional faithful almost
periodic orthogonal representation of Z is a complete invariant for isomorphism
of the associated free Bogoliubov crossed product.

5.5 Solidity and strong solidity for free Bogoliubov
crossed products

The proof of the following result can be extracted literally from the proof of
[195, Theorem 1]. It shows that the dimension of the almost periodic part of
an orthogonal representation of Z is relevant for the isomorphism class of its
free Bogoliubov crossed product. We give a full prove for the convenience of
the reader. Recall that we denote by 1 the trivial orthogonal representation of
the integers.

Theorem 5.5.1. Let π be a one dimensional orthogonal representation of Z.
Then the free Bogoliubov crossed products Mλ and Mλ`π are isomorphic to LF2.

Proof. First note that π is either the trivial representation or πp1q acts via
multiplication with �1 on R. We treat both cases simultaneously. We have
Mλ � LpF8q � Z, where Zñ F8 by shifting a free basis pgnqnPZ. Denote by u
the natural generator of Z in the copy LpZq � LpF8q � Z and denote by v the
generator of Z in LpZq b 1 � LpZq ��1 Z.

We claim that tu, vu and tug0u generate free subalgebras inside Mλ`π. Since
elements in tukvl | k, l P Zu span LpZq ��1 Z densely, it suffices to check that
alternating words w in tukvl | k, l P Z, pk, lq � p0, 0qu and tumg0

|m P Z�u satisfy
τpwq � 0. Take such a word w. Because of the commutation relation vugn �
ugn�1v in LpF8q�Z and vu � �uv in LpZq��1Z, we can rewrite w � ε �w1 �vk,
where

• ε P t1,�1u,
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• w1 an alternating word in tulgn |n P Z, l P Z�u and tum |m P Z�u and
• k P Z such that k � 0 if w1 is trivial.

Denote by E : Mλ`π Ñ LpZq the natural conditional expectation of the free
product decomposition Mλ`π � Mλ �LpZqMπ. Since Epulgnq � 0 � Epumq for
all n P Z and all l,m P Z�, we obtain

τpwq � ετpw1vkq � ετpEpw1qEpvkqq � ετpw1qτpvkq � 0 ,

where the last equality steams from the fact that k � 0 if w1 � 1. Since
tu, v, ug0u generates Mλ`π as a von Neumann algebra, it follows that

Mλ`π � tu, vu2 � tug0u2 � pLpZq ��1 Zq � LpZq � LpF2q
by Theorems 5.2.4 and 5.2.5.

The fact that the left regular representation plus a trivial one dimensional
representation gives rise to a strongly solid free Bogoliubov crossed product,
triggered the following observation.
Theorem 5.5.2. Let π be an orthogonal representation of Z that is the direct
sum of a mixing representation and a representation of dimension at most one.
Then Mπ is strongly solid.

This theorem follows from the next, more general, one. Its proof can be taken
almost literally from [114, Theorem 1.8]. We include a proof for the convenience
of the reader.
Theorem 5.5.3. Let A � N be a mixing inclusion of A into a strongly solid,
non-amenable, tracial von Neumann algebra. Let A � B an inclusion of A into
an amenable, tracial von Neumann algebra. Then M � N �AB is strongly solid.

Proof. We first show that B �M is mixing. As in [114, Theorem 1.8], we have
to show that for every sequence pbnqn in pBq1 with bn Ñ 0 weakly and for all
a, b P B, x, y P N aA we have

EApxEApabnbqyq } }2ÝÑ 0 .

Since bn Ñ 0 weakly, also EApabnbq Ñ 0 weakly. The fact that A � N is mixing,
then implies that }EApxEApabnbqyq}2 Ñ 0.

Let Q � M be a diffuse, amenable von Neumann subalgebra and write P �
NM pQq2. Let p P ZpP q be the maximal projection such that Pp has no
amenable direct summand. We assume p � 0 and deduce a contradiction. Let
ω be a non-principal ultrafilter. By Theorem 5.2.11 we have p � e � f with
e, f P ZppPpq1 X pMpq X ZppPpq1 X ppMpqω) such that
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• eppPpq1 X ppMpqωq � eppPpq1 X pMpq and this algebra is atomic and

• fppPpq1 X ppMpqωq is diffuse.

Either e � 0 or f � 0. In both cases, we will deduce that Pp  M N .

If e � 0 let e0 P pPpq1XpMp be a minimal projection. Then pPe0q1Xpe0Me0qω �
Ce0, so Theorem 5.2.13 applies to Ae0 � e0Me0 and Pe0 � Ne0Me0pQe0q2. We
obtain that one of the following holds.

• Qe0  M A,

• Pe0  M N ,

• Pe0  M B or

• Pe0 is amenable relative to A.

The first item implies that Qe0   B and since B �M is mixing, Lemma 5.2.12
shows that Pe0   B. So the first and the last two items imply that Pe0 has
an amenable direct summand, which contradicts the choice of p. We obtain
Pp  M N in the case e � 0.

If f � 0 then Theorem 5.2.10 applied to Pf � fMf shows that one of the
following holds.

• pPfq1 X pfMfqω  Mω Aω,

• Pf  M N ,

• Pf  M B or

• there is a non-zero projection f0 P ZppPfq1 X fMfq such that Pf0 is
amenable relative to A.

The first item implies pPfq1 X pfMfqω  Mω Bω and since B � M is mixing,
Theorem 5.2.14 shows that Pf  M B. So the first and the last two items imply
that Pf has an amenable direct summand, contradicting the choice of p. This
shows Pp  M N in the case f � 0.

We showed Pp  M N . Let p0 P P , q P Q, p0 ¤ p be non-zero projections,
v P pMq satisfying vv� � p0 and φ : p0Pp0 Ñ qNq a *-homomorphism such
that xv � vφpxq for all x P p0Pp0. We have v�v P φpp0Pp0q1XM . Since p0Pp0
has no amenable direct summand it follows that φpp0Pp0q ¢M A, and hence
Theorem 5.2.9 shows that v�v P N . So we can conjugate P by a unitary in
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order to assume p0Pp0 � N . Take partial isometries w1, . . . , wn P P such that
z � °

i wiw
�
i P ZpP q and w�i wi � p̃ ¤ p0 for all i � 1, . . . , n. Then we obtain a

*-homomorphism

ψ : Pz Ñ MnpCq b p̃Np̃ : x ÞÑ pw�i xwjqi,j .

By [107, Proposition 5.2], know that MnpCq b p̃Np̃ is strongly solid. This
contradicts

ψpPzq � NMnpCqbp̃Np̃pψpAzqq2

and the choice of p.

Proof of Theorem 5.5.2. Write π � π1 ` π2 with π1 mixing and dim π2 ¤ 1.
Then Mπ �Mπ1 �AMπ2 . Since A �Mπ1 is mixing by [214, Theorem D.4], it
is strongly solid by [112, Theorem B]. Also Mπ2 is amenable, so Theorem 5.5.3
applies.

We have a partial converse to the previous theorem.

Theorem 5.5.4. Let π be an orthogonal representation of Z with a rigid
subspace of dimension at least two. Then Mπ is not solid.

Proof. Let ω be a non-principal ultrafilter. Let ξ, η P H be orthogonal vectors
such that there is a sequence pnkqk going to infinity in Z and πpnkqξ Ñ ξ,
πpnkqη Ñ η if k Ñ 8. Then runk s P Aω is a Haar unitary and hence P �
tspξq, spηqu2 is a non-amenable subalgebra such that P 1 X Aω � P 1 X Mω

π

is diffuse. Applying [153, Proposition 7] to P � Mπ shows that Mπ is not
solid.

We conjecture that the previous theorem is sharp.

Conjecture 5.5.5. Let π be an orthogonal representation of Z. Then the
following are equivalent.

• Mπ is strongly solid.

• Mπ is solid.

• π has no rigid subspace of dimension two.

The Theorems 5.5.2 and 5.5.4 of this work as well as Theorem A of [106] on free
Bogoliubov crossed products that do not have property Gamma are supporting
evidence for our conjecture. We explain how Houdayer’s result is related it.
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Theorem 5.5.6 (See Theorem A of [106]). Let G be a countable discrete
group and π : G Ñ OpHq any faithful orthogonal representation such that
dimH ¥ 2 and πpGq is discrete in OpHq with respect to the strong topology.
Then ΓpHq2 �π G is a II1 factor which does not have property Gamma.

First of all, note that in view of Proposition 7 of [153], being non-Gamma
can be considered as a weak form of solidity. Secondly, we remark that an
orthogonal representation π : GÑ OpHq has discrete range, if and only if the
whole Hilbert space H is not rigid in our terminology. This explains the link
between our conjecture and the result of Houdayer.

5.6 Rigidity results

In this section, we want to show how to extract some information about π
from the von Neumann algebra Mπ. As an application, we exhibit orthogonal
representations of Z that cannot give rise to isomorphic free Bogoliubov crossed
products.

Theorem 5.6.1. Let π1, π2 be orthogonal representations of Z such that each
of them has a finite dimensional invariant subspace of dimension 2. Assume
that M �Mπ1 �Mπ2 . Let A � Aπ1 and identify Aπ2 with a subalgebra B �M .
Then there is a finite index A-B-subbimodule of L2pMq.

Proof. We want to use Theorem 5.2.8 in order to find a finite index A-B
bimodule in L2pMq. So we have to verify its assumptions. Corollary 5.3.9
implies that the normalisers of A and B are non-amenable. So by Corollary
5.2.7, A  f

M B and B  f
M A hold. By Proposition 5.3.8, every right finite A-A

subbimodule of L2pMq lies in L2pQNM pAq2q. So Theorem 5.2.8 says that there
is a finite index A-B-subbimodule of L2pMq.
Corollary 5.6.2. Let π1, π2 be two orthogonal representations of Z having
a finite dimensional subrepresentation of dimension at least 2. Let A1 �
M1 and A2 � M2 be the inclusions of the free Bogoliubov crossed products
associated with π1 and π2, respectively. Assume that M1 � M2. Then there
are projections p1 P A1, p2 P A2 and an isomorphism φ : A1p1 Ñ A2p2
preserving the normalised traces such that the bimodules A1p1pp1L2pMqp1qA1p1

and φpA1p1qpp2L2pMqp2qφpA1p1q are isomorphic.

Proof. By Theorem 5.6.1, there are projections p1 P A1, p2 P A2, an
isomorphism φ : A1p1 Ñ A2p2 and a partial isometry v P p1Mp2 such
that av � vφpaq for all a P A1p1. Denote by q1 and q2 the left and right
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support of v, respectively. Cutting down p1 and p2, we can assume that
supp EA1pq1q � p1 and supp EA2pq2q � p2. The bimodules A1p1pq1L2pMqq1qA1p1

and φpA2p2qpq2L2pMqq2qφpA2p2q are isomorphic.

Since p1 is the central support of q1 in A1 XM , there are projections en P A,
n P N such that q1 �

°
n en and partial isometries vkn P A1 XM , n P N, k ¤ n

such that
°
k v

k
npvknq� � en and pv1

nq�v1
n � enq1, pvknq�vkn ¤ q1, for all n and all

2 ¤ k ¤ n. Since the multiplicity function of A1L2pMqA1 is constantly equal to
infinity by Proposition 5.2.2, we find that

Aenpenq1L2pMqenq1qAen �
à
k¤n

AenpvknL2pMqpvknq�qAen � AenpenL2pMqenqAen ,

for all n. So also

Ap1pp1L2pMqp1qAp1 � Ap1pq1L2pMqq1qAp1 .

Similarly, we have A2p2pp2L2pMqp2qA2p2 � A2p2pq2L2pMqq2qA2p2. This finishes
the proof.

A measure theoretic reformulation of Corollary 5.6.2 can be given as follows.

Corollary 5.6.3. Let pµ1, N1q, pµ2, N2q be symmetric probability measures with
multiplicity function on S1 such that both have at least 2 atoms when counted
with multiplicity. For i � 1, 2, let πi be the orthogonal representation of Z
by multiplication with idS1 on L2

RpS1, µi, Niq. If Mπ1 � Mπ2 , then there are
Lebesgue non-negligible Borel subsets B1, B2 � S1 and a Borel isomorphism
ϕ : B1 Ñ B2 preserving the normalised Lebesgue measures such that

ϕ�

�
r
¸
n¥0

µ�n1 � δϕpsqs|B1

�
� r

¸
n¥0

µ�n2 � δss|B2 .

for Lebesgue almost every s P B2

Proof. Write M � Mπ1 � Mπ2 and Ai, for i P t1, 2u. Denote by rνis �³r°n¥0 µ
�n
i � δssdλpsq the maximal spectral type of AiL2pMqAi according to

Proposition 5.2.3. By Corollary 5.6.2, there are projections p1 P A1, p2 P A2 and
an isomorphism φ : A1p1 Ñ A2p2 such that the bimodules A1p1pp1L2pMqp1qA1p1

and φpA1p1qpp2L2pMqp2qφpA1p1q are isomorphic. The projections pi are indicator
functions of Lebesgue non-negligible Borel sets Bi � S1 and the isomorphism
φ equals ϕ� for some Borel isomorphism ϕ : B1 Ñ B2 preserving the
normalised Lebesgue measures. Since the bimodules A1p1pp1L2pMqp1qA1p1 and
A2p2pp2L2pMqp2qA2p2 are isomorphic via φ, their maximal spectral types are
isomorphic via ϕ� ϕ. Using their integral decomposition with respect to the
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projection on the first component of S1 � S1 as it is calculated in Proposition
5.2.3, we obtain�»

B2

r
¸
n¥0

µ�n2 � δss|B2 dλpsq
�
� pϕ� ϕq�

�»
B1

r
¸
n¥0

µ�n1 � δss|B1 dλpsq
�

� pϕ� idq�
�»

B2

r
¸
n¥0

µ�n1 � δϕpsqs|B1 dλpsq
�

�
�»

B2

ϕ�pr
¸
n¥0

µ�n1 � δϕpsqs|B1q dλpsq
�

As a result, for almost every s P B2, we obtain the equality

ϕ�

�
r
¸
n¥0

µ�n1 � δϕpsqs|B1

�
� r

¸
n¥0

µ�n2 � δss|B2 .

The next theorem follows by applying the previous one to some special cases.

Theorem 5.6.4. No free Bogoliubov crossed product associated with a
representation in the following classes is isomorphic to a free Bogoliubov crossed
product associated with a representation in the other classes.

1. The class of representations λ`πap, where λ is a multiple of the left regular
representation of Z and πap is a faithful almost periodic representation of
dimension at least 2.

2. The class of representations λ`πap, where λ is a multiple of the left regular
representation of Z and πap is a non-faithful almost periodic representation
of dimension at least 2.

3. The class of representations ρ` πap, where ρ is a representations of Z by
multiplication with idS1 on L2

RpS1, µq, µ is a probability measure on S1

such that µ�n is singular for all n and πap is a faithful almost periodic
representation of dimension at least 2.

4. The class of representations ρ ` πap, where ρ is a representations of Z
by multiplication with idS1 on L2

RpS1, µq, µ is a probability measure on
S1 such that µ�n is singular for all n and πap is a non-faithful almost
periodic representation of dimension at least 2.
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5. Faithful almost periodic representations of dimension at least 2.

6. Non-faithful, almost periodic representations of dimension at least 2.

7. The class of representations ρ` π, where ρ is mixing and dim π ¤ 1.

Note that by [112], there are measures as mentioned item (iii) and (iv).

Proof. By Theorem 5.5.3, all free Bogoliubov crossed products associated with
representations in 7 are strongly solid, but for all other free Bogoliubov crossed
products A � M is an amenable diffuse von Neumann subalgebra with a
non-amenable normaliser.

It remains to consider representations in (i) to (vi). They satisfy the requirements
of Corollaries 5.6.2 and 5.6.3.

We first claim that representations from (i) to (vi) with a faithful and non-faithful
almost periodic part, respectively, cannot give rise to isomorphic free Bogoliubov
crossed products. Let π be an orthogonal representation of Z and let B � S1

be Lebesgue non-negligible. The subgroup generated by the eigenvalues of the
complexification of π is dense if and only if the almost periodic part of π is faithful.
So by Section 5.2.4, the atoms of the spectral invariant of pAπpL2pMqppAπ are
an ergodic equivalence relation on B �B if and only if π has a faithful almost
periodic part. So Corollary 5.6.2 proves our claim.

Let us now consider the weakly mixing part of the representations in the theorem.
It is known that the spectral measure of the left regular representation of Z
on 2̀

RpZq is the Lebesgue measure. So from Corollary 5.6.3, it follows that
the representations whose weakly mixing part is the left regular representation,
cannot give a free Bogoliubov crossed product isomorphic to a free Bogoliubov
crossed product associated with any of the other representations in the
theorem. Finally, note that for any non-zero projection p P Aπ the bimodules
pAπL2ppMπpqpAπ is a direct sum of finite index bimodules if and only if the
representation π has no weakly mixing part. So appealing to Corollary 5.6.2,
we finish the proof.



Chapter 6

A Connection between easy
quantum groups, varieties of
groups and reflection groups

This chapter is based on our joint work with Moritz Weber [184]. We prove
that a fairly large class of compact quantum groups injects into the lattice of
reflection groups via a natural construction. More precisely, we associate with
certain easy quantum groups G, in the sense of Banica and Speicher, a normal
subgroup of the infinite free product Z�82 of the cyclic group of order two, which
completely remembers the compact quantum group G. Exploiting this relation,
we use the theory of varieties of groups in order to show that easy quantum
groups are not classifiable. Furthermore, we construct an inverse to the above
map, which associates, by means of a quantum isometry group construction, an
easy quantum group with certain reflection groups. This gives rise to a large
number of new quantum isometry groups.

Introduction

In Connes’ noncommutative geometry [53], the correct replacement for compact
groups is given by Woronowicz’s compact quantum groups [233, 236]. They
are established due to a definition by a natural set of axioms, the natural
development of a structural theory and a Tannaka-Krein type result identifying
their categories of representations precisely as the concrete compact tensor

149
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C�-categories [234]. One of the most intriguing questions in noncommutative
geometry is the question for classification of noncommutative objects in terms
of classical data.

The main result of this chapter states that there is a lattice isomorphism between
specific classes of compact quantum groups and reflection groups. This opens
new perspectives for research on compact quantum groups, since, as we show,
results and techniques from the theory of reflection groups and varieties of
groups (see Section 6.1.4) now can be applied to compact quantum groups.

There are three primary sources of compact quantum groups. Next to
q-deformations of compact Lie groups [122, 68, 186] and quantum isometry
groups [102] the third important class of compact quantum groups consists of
Banica’s and Speicher’s easy quantum groups [24]. Easy quantum groups are
defined by a combinatorial condition on their categories of representations, which
naturally connects them to Voiculescu’s free probability theory in Speicher’s
combinatorial setting. We explain this in detail later.

Our results give a concluding answer to the question whether the classification
of easy quantum groups is feasible. Embedding the lattice of varieties of groups
into the lattice of easy quantum groups, we show that a complete classification
of easy quantum groups is impossible. This fact gives a new direction to
the research in this field of mathematics by emphasising the need for global
structural results on the lattice of easy quantum groups and the need for search
of the most useful subclasses of easy quantum groups. We give results in both
directions, making use of new techniques that are available because of our work.

The combinatorial description, which categories of representations of easy
quantum groups satisfy by definition, goes by the name of categories of partitions.
We introduce the natural condition of a simplifiable easy quantum group and
the notion of a symmetric reflection group. Using these notations, our main
result can be stated as a commuting diagram of lattice isomorphisms and
anti-isomorphisms, respectively:

simplifiable
categories of
partitions

�

%%KKKKKKKKK

�
//

simplifiable
easy quantum

groups
oo

�yyssssssss

symmetric
reflection
groups

99ssssssss

eeKKKKKKKK
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We give an explicit description of all arrows in this diagram in Section 6.6.1.

As mentioned before, quantum isometry groups are another source of compact
quantum groups. They are particularly interesting, as they constitute the natural
replacement for isometry groups of manifolds in Connes’ noncommutative
geometry. For example, they were calculated in the context of the standard
model of particle physics [31]. In general, however, the calculation of quantum
isometry groups poses a notoriously difficult problem. We describe the
isomorphism of lattices between simplifiable easy quantum and symmetric
reflection groups in terms of a quantum isometry group construction. This gives,
on the one hand, an explicit method for passing from a symmetric reflection
group to its associated easy quantum group. On the other hand, it solves the
problem of calculating the quantum isometry groups of a fairly large number
of quantum spaces, namely of the group C�-algebras of symmetric reflection
groups.

We now put the definition of easy quantum groups and our result in a historical
context. Let G be a (classical) Lie group and consider the C�-algebra CpGq
of continuous functions on G. By means of the fundamental representation
u P CpGq bMnpCq, we can view CpGq as a universal C�-algebra:

CpGq � C�
�
uij , 1 ¤ i, j ¤ n | the matrices puijq and pu�ijq

are unitaries, uijukl � ukluij , pRGq
�
,

where pRGq are some further relations of the generators uij . The liberation G�

of G is a compact quantum group given by the universal C�-algebra

CpG�q � C�
�
uij , 1 ¤ i, j ¤ n |

the matrices puijq and pu�ijq are unitaries, pRGq
�
,

where we omit the commutativity of the generators uij .

Using this idea, Wang [230, 231] constructed three free quantum groups, namely
the free orthogonal O�

n , the free unitary U�
n , and the free symmetric quantum

group S�n , liberating the groups On, Un and Sn. A further example is the free
hyperoctahedral quantum group H�

n introduced by Banica, Bichon, and Collins
[13].

The intertwiner spaces of Sn, S�n , On, O�
n , Hn and H�

n admit a combinatorial
description by means of partitions. The process of liberation is reflected by
restricting to those partitions that are non-crossing. In their 2009 article [24],
Banica and Speicher initiated a systematic study of easy quantum groups, i.e.
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of those compact quantum groups whose intertwiner spaces are described by the
combinatorics of categories of partitions (see Definition 6.3 of [24] or Definition
1.4 of [232]). This class of quantum groups includes S�n , O�

n , and H�
n , as well

as the groups Sn, On and Hn, but it goes far beyond the question of liberation
of groups. Roughly speaking, it contains all compact quantum groups G with
Sn � G � O�

n , whose intertwiner spaces “have a nice combinatorics”. It is a
consequence of the seminal work by Woronowicz [234] that the correspondence
between easy quantum groups and their categories of partitions is one-to-one.

The work on easy quantum groups has been continued by Banica, Bichon,
Curran, Skalski, Sołtan, Speicher, Vergnioux, and the authors of the present
chapter in a couple of articles [25, 26, 17, 18, 182, 16, 14, 23]. They have three
aspects: firstly, easy quantum groups form a natural link between quantum
groups, combinatorics and free probability theory [129, 57, 58, 19]. Secondly,
they give rise to interesting operator algebras [218, 42, 91, 119]. Thirdly, the
approach of Banica and Speicher via easy quantum groups systematised the
study of free quantum groups in an accessible framework, which gives rise to a
large number of new examples of compact quantum groups. Amongst others, it
lead to the discovery of further examples of free quantum groups (see Theorem
3.16 of [24] and Corollary 2.10 of [232]). These free easy quantum groups
(also called free orthogonal quantum groups) and likewise the easy groups were
completely classified by Banica and Speicher [24], and by the second author
[232]. Furthermore, examples of half-liberated easy quantum groups were given
by Banica, Curran, Speicher, and the second author [24, 17, 232], and they
were completely classified in [232]. The half-liberation is given by replacing the
commutation relation

uijukl � ukluij

by
uijuklurs � ursukluij ,

which can be interpreted as a slight weakening of commutativity.

It quickly turned out, that there are even more easy quantum groups than
the above mentioned – and in this chapter, we show that there are in fact
uncountably many and that they cannot be classified. While the classification
of non-hyperoctahedral easy quantum groups is complete [17, 232], the case
of hyperoctahedral easy quantum groups was still open. Hyperoctahedral
easy quantum groups are quantum subgroups of H�

n corresponding to
hyperoctahedral categories of partitions, i.e. categories which contain the
four block partition [[[ (four points, which are all connected) but not the
double singleton Ò b Ò (two points, which are not connected). See Section 6.1.2
for details on partitions and categories.
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We isolate a natural class of hyperoctahedral easy quantum groups – which we
call simplifiable – with the commutation relations

u2
ijukl � uklu

2
ij .

By this, the focus is put onto a quite unexplored class of partitions, and new
questions arise. The main feature of these quantum groups is that the squares of
the generators uij commute, whereas the elements uij itself behave rather like
free elements. This mixture of commutative and non-commutative structures
could play a special role in the understanding of non-commutative distributions.
In this context, our result that the lattice of varieties of groups embeds into the
lattice of simplifiable quantum groups can be interpreted as an indicator for
the fact that the latter offer a rich source of new phenomena in free probability
theory.

The technical heart of this chapter is worked out in Sections 6.2 and 6.3, where
we construct a map from simplifiable categories of partitions to subgroups of
Z�82 . Given such a category C, we label the partitions in C according to their
block structure by letters a1, a2, . . . in order to obtain words. Mapping these
words to Z�82 (where now a2

i � e), we obtain the following main result:

Theorem 6.A (See Theorem 6.3.10). There is a lattice isomorphism between
simplifiable categories of partitions and proper S0-invariant subgroups of E,
where E is the subgroup of Z�82 consisting of all words of even length.

Here, S0 is the subsemigroup of EndpZ�82 q generated by all inner automorphisms
and by finite identifications of letters. This way, we obtain a one-to-one
correspondence with a class of invariant subgroups of F8, which contains
the lattice of fully characteristic subgroups of F8. This lattice in turn is
anti-isomorphic to the lattice of varieties of groups [144]. See Section 6.1.4 for
an introduction to varieties of groups and fully characteristic subgroups. By
Olshanskii [148], there are uncountably many varieties of groups. Hence, we
derive the following theorem.

Theorem 6.B (See Theorems 6.4.7, and 6.4.9). There is an injection of lattices
of varieties of groups into the lattice of easy quantum groups. In particular, there
are uncountably many easy quantum groups that are pairwise non-isomorphic.

We express the relation between S0-invariant proper subgroups of E and their
associated simplifiable quantum groups by means of a quantum isometry group
construction. A quantum isometry group is the maximal quantum group acting
faithfully by isometries on a non-commutative space. It is the non-commutative
replacement of the isometry group. Quantum isometry groups were studied by
Bichon [34], Banica [10, 11], Goswami [102], Bhowmick and Goswami [33, 32],
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Banica and Skalski [20], Quaegebeur and Sabbe [180] and others. Banica
and Skalski first studied the quantum isometry groups of discrete group duals
in [22]. Other examples of such quantum isometry groups where studied by
Liszka-Dalecki and Sołtan [132] and Tao and Qiu [203]. Notably, Banica and
Skalski related in [21] quantum isometry groups and easy quantum groups for
the first time.

If H is an S0-invariant subgroup of Z�82 , denote by pHqn the set of all words in
H that involve at most the first n letters of Z82 . Denote by Hr8s

n the maximal
simplifiable easy quantum group.

Theorem 6.C (See Theorems 6.6.3 and 6.6.6). If H ¤ E ¤ Z�82 is a proper
S0-invariant subgroup of E, then

Hr8s
n XQISOpC�pZ�n2 {pHqnqq

is a simplifiable easy quantum group.

Vice versa, the diagonal subgroup of any simplifiable easy quantum group is of
the form Z�n2 {pHqn for some proper S0-invariant subgroup H ¤ E. Moreover,
these two operations are inverse to each other.

This correspondence in connection with Theorem 6.B, yields a large class of
examples of non-classical quantum isometry groups.

6.1 Preliminaries and notations

In the whole chapter, tensor products of C�-algebras are taken with respect to
the minimal C�-norm.

6.1.1 Compact quantum groups and compact matrix quan-
tum groups

In [236], Woronowicz defines a compact quantum group (CQG) as a unital
C�-algebra A with a unital *-homomorphism ∆ : AÑ AbA such that

• ∆ is coassociative, i.e. p∆b idq �∆ � pidb∆q �∆,

• pA,∆q is bisimplifiable, i.e. the subspaces span ∆pAqp1 b Aq and
span ∆pAqpAb 1q are dense in AbA.
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If pA,∆q is a CQG, then ∆ is called its comultiplication. Note that the
bisimplifiability condition is in fact an assumption on left and right cancellation
(see [236, Remark 3] or [205, Proof of Proposition 5.1.3]). All quantum groups in
this chapter are universal versions, meaning that it is as a C�-algebra isomorphic
to the universal enveloping C�-algebra of its polynomial subalgebra (see [205,
Chapter 5.4]). A morphism between two CQGs in their universal version A and
B is a unital *-homomorphism φ : A Ñ B such that pφ b φq � ∆A � ∆B � φ.
We say that A is a quantum subgroup of B if there is a surjective morphism
B � A, and they are isomorphic if there is a bijective morphism between them.

A unitary corepresentation matrix of A is a unitary element u P MnpAq such
that ∆Apuijq �

°
k uik b ukj for all 1 ¤ i, j ¤ n.

The concept of CQGs evolved from compact matrix quantum group (CMQG),
[233, 235]. A compact matrix quantum group is a unital C�-algebra A with an
element u P MnpAq such that

• A is generated by the entries of u,

• there is a *-homomorphism ∆ : AÑ AbA such that ∆puijq �
°
k uikbukj

for all 1 ¤ i, j ¤ n,

• u and its transpose ut are invertible.

Every CMQG gives rise to a CQG, but the former contains more information
– the choice of u. The matrix u is called the fundamental corepresentation
of pA, uq and it is a corepresentation matrix of pA,∆q. A CMQG pA, uq is a
universal version, if and only if A is the universal enveloping C�-algebra of
the *-algebra generated by the entries of u. A morphism between CMQGs in
their universal version A and B is a morphism of the underlying CQGs such
that pφ b idqpuAq is conjugate by a matrix in GLnpCq with uB. If A and B
are CMQGs and there is a bijective morphism of CMQGs between them, we
say that they are similar. We say that two CMQGs are isomorphic if they are
isomorphic as CQGs.

6.1.2 Tannaka-Krein duality, easy quantum groups and cate-
gories of partitions

Woronowicz’ Tannaka-Krein duality

If pA,∆q is a CQG and u P MpK pHq b Aq lies in the multiplier algebra of
K pHqbA for some Hilbert space H, then u is a unitary corepresentation of A if
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u is a unitary and pidb∆qpuq � u12u13. We used the leg notation: u12 � ub 1,
u13 � pidb Σqpub 1q, where Σ is the flip on AbA. A morphism between unitary
corepresentations u P MpK pHq b Aq and v P MpK pKq b Aq is a bounded
linear operator T P BpH,Kq such that pT b 1q � u � v � pT b 1q. A morphism
between two unitary corepresentations is also called an intertwiner. The space
of intertwiners between two unitary corepresentations u P AbBpHq and v P
AbBpKq is denoted by Hompu, vq. With this structure, the finite dimensional
unitary corepresentations of a CQG pA,∆q form the concrete C�-category
UCorepfinpAq, i.e. a C�-category with a faithful C�-functor UCorepfin Ñ FdHilb
to the category of finite dimensional Hilbert spaces (see [234] for details). The
tensor product of two corepresentation u P BpHq b A and v P BpKq b A is
defined by u b v � u13v23. This tensor product induces the structure of a
concrete complete compact tensor C�-category in the sense of Woronowicz on
UCorepfinpAq (see [233, 234] or [205, Chapter 5]).

The fundamental corepresentation of a CMQG is a generator of its category of
finite dimensional corepresentations.

Theorem 6.1.1 (See Proposition 6.1.6 of [205]). If v is a unitary corepresen-
tation of a compact matrix quantum group pA, uq, then there is k P N such that
v is a subobject of ubk.

Woronowicz proved the following version of Tannaka-Krein duality.

Theorem 6.1.2 (See [234]). Any concrete complete compact tensor C�-category
arises as the category of finite dimensional unitary corepresentations of some
compact quantum group. Two compact quantum groups A and B are isomorphic
if and only if their categories of corepresentations are equivalent over FdHilb.
If A and B are compact matrix quantum groups, they are similar if and only
if their categories of corepresentations are equivalent over FdHilb by a functor
preserving the isomorphism class of the fundamental corepresentation.

Categories of partitions

In order to describe corepresentation categories of quantum groups combinato-
rially, Banica and Speicher introduced the notions of a category of partitions
and of easy quantum groups [24]. A partition p is given by k upper points and l
lower points which may be connected by lines. By this, the set of k � l points
is partitioned into several blocks. We write a partition as a diagram in the
following way:
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� � � � . . . �
p

� � � � . . . �
k upper points and
l lower points.

Two examples of such partitions are the following diagrams.

In the first example, all four points are connected, and the partition consists only
of one block. In the second example, the left upper point and the right lower
point are connected, whereas neither of the two remaining points is connected
to any other point.

The set of partitions on k upper and l lower points is denoted by P pk, lq, and
the set of all partitions is denoted by P . A partition p P P pk, lq is called
non-crossing, if it can be drawn in such a way that none of its lines cross.

A few partitions play a special role, and they are listed here:

• The singleton partition Ò is the partition in P p0, 1q on a single lower point.

• The double singleton partition Ò b Ò is the partition in P p0, 2q on two
non-connected lower points.

• The pair partition (also called duality partition) [ is the partition in
P p0, 2q on two connected lower points.

• The unit partition (also called identity partition) | is the partition in
P p1, 1q connecting one upper with one lower point.

• The four block partition [[[ is the partition in P p0, 4q connecting four
lower points.

• The s-mixing partition hs is the partition in P p0, 2sq for s P N given by
two blocks connecting the 2s points in an alternating way:

hs �
. . .

. . .
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• The crossing partition (also called symmetry partition) {z is the partition
in P p2, 2q connecting the upper left with the lower right point, as well as
the upper right point with the lower left one. It is the partition of two
crossing pair partitions.

• The half-liberating partition
�pp is the partition in P p3, 3q given by the

blocks t1, 31u, t2, 21u and t3, 11u connecting three upper points 1, 2, 3 and
three lower points 11, 21, 31 such that 1 and 31 are connected, 2 and 21, and
finally 3 and 11.

Further partitions will be introduced in Section 6.2.2.

We will also use labelled partitions, i.e. partitions whose points are either labelled
by numbers or by letters. The labelling of a partition p P P pk, lq with letters is
usually proceeded by starting at the very left of the k upper points of p and
then going clockwise, ending at the very left of the l lower points. The labelling
with numbers typically labels both the upper and the lower row of points from
left to right.

There are the natural operations tensor product (p b q), composition (pq),
involution (p�) and rotation on partitions (see [24, Definition 1.8] or [232,
Definition 1.4]). A collection C of subsets Dpk, lq � P pk, lq, k, l P N is called a
category of partitions if it is closed under these operations and if it contains
the pair partition [, and the unit partition | (see [24, Definition 6.1] or [232,
Definition 1.4]).

A category of partitions C is called hyperoctahedral if the four block [[[ is in
C, but the double singleton Ò b Ò is not in C.

Given a partition p P P pk, lq and two multi-indices pi1, . . . , ikq, pj1, . . . , jlq, we
can label the diagram of p with these numbers (now, the upper and the lower
row both are labelled from left to right, respectively) and we put

δppi, jq �
#

1 if p connects only equal indices,
0 if there is a string of p connecting unequal indices .

For every n P N, there is a map Tp : pCnqbk Ñ pCnqbl associated with p, which
is given by

Tppei1 b � � � b eikq �
¸

1¤j1,...,jl¤n
δppi, jq � ej1 b � � � b ejl .

Definition 6.1.3 (Definition 6.1 of [24] or Definition 2.1 of [17]). A compact
matrix quantum group pA, uq is called easy, if there is a category of partitions
C given by Dpk, lq � P pk, lq, for all k, l P N such that

Hompubk, ublq � spantTp | p P Dpk, lqu .
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Combining Theorems 6.1.1 and 6.1.2, we obtain the following theorem, which is
the basis of all combinatorial investigation on easy quantum groups.

Theorem 6.1.4 (See [24]). There is a bijection between categories of partitions
and easy quantum groups up to similarity.

Thus, easy quantum groups are completely determined by their categories of
partitions.

6.1.3 Quantum isometry groups

Given a discrete group G with finite generating set S � G and associated
word-length function l : G Ñ N, lpgq � mintn P N | Ds1, . . . , sn P S : g �
s1 � � � snu, we obtain a quantum isometry group of C�maxpGq along the lines of
[20]. We denote by ug the canonical unitary of C�maxpGq associated with g P G.

Definition 6.1.5 (Definitions 2.5 and Section 4 of [20]). Let pA, u � pustqs,tPSq
be a compact matrix quantum group and write PolpAq for its polynomial algebra
� � algpust | s, t P Sq. An action α : C�maxpGq Ñ C�maxpGq b A on C�maxpGq is
faithful and isometric with respect to l, if

• αpLnq � Ln b PolpAq for all n P N, where Ln � spantug | lpgq � nu and
• αpusq �

°
tPS ut b uts for all s P S.

Theorem 6.1.6 (Theorems 2.7 and 4.5 of [20]). There is a maximal compact
matrix quantum group pA, uq acting faithfully and isometrically with respect to
l on C�maxpGq. That is, for any other compact matrix quantum group pB, vq
acting faithfully and isometrically with respect to l on C�maxpGq there is a unique
morphism of CMQGs φ : pA, uq Ñ pB, vq such that φpuq � v.

6.1.4 Varieties of groups

In this section we briefly explain the concepts of varieties of groups. We advice
the interested reader to consult [144] for a thorough introduction.

Consider F8 with free basis x1, x2, . . . and let w P F8 be a word in the
letters x1, x2, . . . xn. We say that the identical relation w holds in a group
G if for any choice of elements g1, g2, . . . gn P G, replacing xi by gi, we have
wpg1, . . . , gnq � 1G. Following [144] a variety of groups V is a class of groups
for which there is a set of words R � F8 such that every group G in V satisfies
the identical relations in R.
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Let us give some examples of varieties of groups.

Example 6.1.7. The following classes of groups are varieties of groups. We
also describe the identical relations that characterise them.

1. The class of all groups is the variety of groups, where no law is satisfied.

2. The class of abelian groups is defined by the commutator rx, ys �
xyx�1y�1.

3. The class of groups with a fixed exponent s is given by xs.

4. The class of nilpotent groups of class 2 is described by rrx, ys, zs.

Varieties of groups are important for this work, because they correspond precisely
to the fully characteristic subgroups of F8. Given an inclusion of groups H ¤ G,
H is fully characteristic in G, if it is invariant under all endomorphisms of G.
This means that φpHq � H for every endomorphism φ P EndpGq.
The set of identical relations that hold in a given group, form a subgroup of
F8. This observation is the trigger to prove the following theorem.

Theorem 6.1.8 (See [143] or Theorem 14.31 in [144]). There is a lattice
anti-isomorphism between varieties of groups and fully characteristic subgroups
of F8 sending a variety of groups to the set of all identical relations that hold
in it.

We will make use of another observation concerning elements of free groups.
Two sets of words in Fn are called equivalent, if they generate the same fully
characteristic subgroup.

Theorem 6.1.9 (See Theorem 12.12 in [144]). Every word w P Fn, n P NYt8u
is equivalent to a pair of words a and b in Fn, where a is of the form xm for
some m ¥ 2 and x P Fn, and b is an element of the commutator subgroup
rFn,Fns.

6.2 Simplifiable hyperoctahedral categories

6.2.1 A short review of the classification of easy quantum
groups

Recall from Section 6.1.2 that a category of partitions is called hyperoctahedral,
if it contains the four block partition [[[ but not the partition Ò b Ò. An easy
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quantum group G is called hyperoctahedral, if its corresponding category of
partitions is hyperoctahedral. By [17, Theorem 6.5] and [232, Corollary 4.11]
we know that there are exactly 13 non-hyperoctahedral easy quantum groups,
resp. 13 non-hyperoctahedral categories of partitions, so they are completely
classified. We will shed some light on the classification of hyperoctahedral
categories. Let us first give a short review of the classification of easy quantum
groups.

For partitions p1, . . . , pn P P , we write C � xp1, . . . , pny for the category
generated by these partitions, i.e. C is the smallest subclass of P which is
closed under the category operations (see Section 6.1.2) and which contains the
partitions p1, . . . , pn. (Note that the pair partition [ and the unit partition |
are always contained in a category as trivial base cases.)

By [24, Theorem 3.16] and [232, Corollary 2.10], there are exactly seven free
easy quantum groups (also called free orthogonal quantum groups), namely:

B�
n � B1

n
� � B#�

n � O�
n

� � �

S�n � S1n
� � H�

n .

The corresponding seven categories of partitions are described as follows.

xÒy � xp pp r ppp y � xÒ b Òy � xHy � NC2

� � �

xÒ,[[[y � NC � xÒ b Ò,[[[y � x[[[y.

Note that these partitions are all non-crossing, i.e. all of these seven categories
are subclasses of NC, the collection of all non-crossing partitions. We denote
by NC2 the category of all non-crossing pair partitions. Furthermore, note
that only x[[[y is a hyperoctahedral category, the category corresponding to
the hyperoctahedral quantum group H�

n by [13]. The other six categories are
non-hyperoctahedral.

Besides the non-crossing categories, there are many categories which contain
partitions that have some crossing lines. The most prominent partition which
involves a crossing is the crossing partition (also called symmetry partition) {z



162 A CONNECTION BETWEEN EASY QUANTUM GROUPS, VARIETIES OF GROUPS AND
REFLECTION GROUPS

in P p2, 2q. Every category containing the crossing partition corresponds to a
group. By [24, Theorem 2.8] we know that there are exactly six easy groups.

Bn � B1
n � On

� � �

Sn � S1n � Hn.

Accordingly, there are exactly six categories of partitions containing the crossing
partition {z.

x{z, Òy � x{z, Ò b Òy � x{zy � P2

� � �

x{z, Ò,[[[y � P � x{z, Ò b Ò,[[[y � x{z,[[[y.

Note that on the level of categories containing the crossing partition, the
two categories x{z, p pp r ppp y and x{z, Ò b Òy coincide. Furthermore, amongst the
above categories only x{z,[[[y is hyperoctahedral; the other five categories are
non-hyperoctahedral.

Half-liberated easy quantum groups were introduced in [24] and [17]. They
correspond to categories containing the half-liberating partition

�pp but not the
crossing partition {z. By [232, Theorem 4.13], there are exactly the following
half-liberated easy quantum groups, containing the hyperoctahedral series Hpsq

n ,
s ¥ 3 of [17, Definition 3.1].

B#�
n � O�

n

�

H�
n

�

Hpsq
n , s ¥ 3.
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The corresponding categories of partitions are described as follows.

x�pp , Ò b Òy � x�pp y
�

x�pp ,[[[y

�

x�pp ,[[[, hsy.
Here, x�pp ,[[[y and x�pp ,[[[, hsy are hyperoctahedral, for all s ¥ 3. The
categories x�pp , Ò b Òy and x�pp y in turn are two more non-hyperoctahedral
categories, completing the list of 13 non-hyperoctahedral categories.

We conclude that the only class of categories which ought to be classified is the
one of hyperoctahedral categories, as illustrated by the following picture.

xÒ,[[[y � xÒ b Ò,[[[y � x[[[y

�

?

��

�

x{z, Ò,[[[y � P � x{z, Ò b Ò,[[[y � x{z,[[[y .

The question is to find all categories C of partitions, which contain the four
block [[[ but not the double singleton Ò b Ò. Furthermore, we can restrict
to those categories which do not contain the half-liberating partition

�pp . The
higher hyperoctahedral series Hrss

n , s P t3, 4, . . . ,8u of [17, Section 4] fall into
this class. They are given by the categories x[[[, hsy.

6.2.2 Base cases in the class of hyperoctahedral categories

By definition, the category x[[[y is a natural base case in the class of
hyperoctahedral categories, but we will see that also other categories serve



164 A CONNECTION BETWEEN EASY QUANTUM GROUPS, VARIETIES OF GROUPS AND
REFLECTION GROUPS

as base cases for interesting subclasses of hyperoctahedral categories. For this,
we introduce two more partitions.

Definition 6.2.1. The fat crossing partition

[[

�[[ is the following partition in
P p4, 4q, connecting the upper points 1 and 2 with the lower points 31 and 41,
as well as the upper points 3 and 4 with the lower points 11 and 21, i.e.

[[

�[[
consists of two crossing four blocks.

1 2 3 4

11 21 31 41

�
�
�@
@
@

Note that any category C containing the fat crossing, also contains the four
block partition (see also Lemma 6.2.4). If furthermore Ò b ÒR C, then C is
hyperoctahedral. The converse is also true: Any hyperoctahedral category
(apart from x[[[y) contains the fat crossing (see Proposition 6.2.12).

Definition 6.2.2. The pair positioner partition [{�[ is the following partition
in P p3, 3q, consisting of a four block on 1, 2, 21 and 31 and a pair on 3 and 11.

�
�
�
�
�
�

A
A
A

1 2 3

11 21 31

Remark 6.2.3. In [17, Lemma 4.2] the following partitions kl P P pl� 2, l� 2q
for l P N were used to define the higher hyperoctahedral series Hrss

n (see also [232]
for a definition of kl). They are given by a four block on t1, 11, l � 2, pl � 2q1u
and pairs on ti, i1u for i � 2, . . . , l � 1. The following picture illustrates the
partition kl – note that the waved line from 11 to l � 2 is not connected to the
lines from 2 to 21, from 3 to 31 etc.
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kl �
. . .

11 21 31 . . . pl � 1q1 pl � 2q1

1 2 3 . . . l � 1 l � 2

� �

We check that k1 is in a category C if and only if all kl are in C for all l P N
(apply the pair partition to klbk1 to obtain kl�1). The pair positioner partition[{�[ is a rotated version of k1, thus

[{�[P C if and only if k1 P C. Furthermore,
x [{�[y corresponds to Hr8s

n of [17].

The fat crossing partition

[[

�[[ can be constructed out of the pair positioner
partition [{�[ using the category operations. The following lemma shows some
relations between the partitions.

Lemma 6.2.4. The following partitions may be generated inside the following
categories using the category operations.

(i) [[[P x

[[

�[[y.

(ii)
[[

�[[P x
[{�[y.

(iii) [{�[P xhsy for all s ¥ 3.

(iv) [{�[P x
�pp ,[[[y.

Proof. (i) We obtain [[[ as the composition of

[[

�[[, | b [ b | and [.
(ii) Compose the tensor product [[[ b [[[ with [{�[ in the following way:
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�
�
�
�
��

A
A
A

�
�
�
�
��

A
A
A

�
.

Then use rotation to obtain

[[

�[[.
(iii) We construct the rotated version k1 of [{�[ using hs b |b3 and its rotated
version:

. . .

. . .

. . .

. . .

� ��

a b a

a b a

a b a

a b a

.

(iv) The partition

[

p[P P p2, 2q is a rotated version of the four block [[[. Compose[

p[ b| with the half-liberated partition
�pp to obtain [{�[.

The pair positioner partition [{�[ plays an important role in the sequel. By
the preceding lemma, we see that any category C containing the pair positioner
partition [{�[ also contains the four block partition [[[. Thus, these categories
form a subclass of the hyperoctahedral categories.

Definition 6.2.5. A category of partitions is called simplifiable if it contains
the pair positioner partition [{�[ but not the double singleton Ò b Ò.
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Note that every simplifiable category is also hyperoctahedral. Simplifiable
categories carry a nice feature – they can be described by very simplified
partitions. This is the content of Lemma 6.2.7. We first prove a lemma on the
block structure of partitions in simplifiable categories.

Lemma 6.2.6. Let C be any category of partitions, and let p P C.

(a) If C contains the four block partition [[[, we can connect neighbouring
blocks of p inside of C, i.e. the partition p1 obtained from p by connecting
two blocks of p which have at least two neighbouring points is again in C.

(b) If C contains the pair positioner partition [{�[, we can connect arbitrary
blocks of p inside of C, i.e. the partition p1 obtained from p by combining
two arbitrary blocks of p is again in C.

Proof. We may assume that p has no upper points, by rotation.

(a) We can compose p with |bαb

[

p[ b|bβ for suitable α and β.

(b) By composition, we insert a pair partition [ next to the block b1 of p. By
(a), we can connect it to b1. Using the pair positioner partition [{�[, we can
shift these two points next to the block b2. Again by (a), we connect it to b2.
This yields a partition in which the blocks b1 and b2 are connected. Capping
this partition with the pair partition erases the two auxiliary points and yields
the desired partition in C.

Let p P P p0, lq be a partition with k blocks. We may view p as a word in k
letters a1, . . . , ak corresponding to the points connected by the partition p:

p � ak1
ip1qa

k2
ip2q . . . a

kn
ipnq .

Here aipjq � aipj�1q for j � 1, . . . , n � 1 and kj P N. For example, the four
block partition [[[ corresponds to the word a4, (a rotated version of) the pair
positioner partition [{�[ corresponds to ab2ab2, and the double singleton Ò b Ò
corresponds to ab. Conversely, every word ak1

ip1qa
k2
ip2q . . . a

kn
ipnq of length l yields a

partition p P P p0, lq connecting nothing but equal letters of the word.

For technical reasons, we introduce the empty partition H P P p0, 0q which is by
definition in any category of partitions C.

Lemma 6.2.7. Let C be a category of partitions. Let p P P p0, lq be a partition,
seen as the word p � ak1

ip1qa
k2
ip2q . . . a

kn
ipnq.

(a) We put k1j :�
#

1 if kj is odd
2 if kj is even

, and p1 :� a
k11
ip1qa

k12
ip2q . . . a

k1n
ipnq.
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If C contains the four block partition [[[, then p P C if and only if p1 P C.

(b) We put k2j :�
#

1 if kj is odd
0 if kj is even

, and p2 :� a
k21
ip1qa

k22
ip2q . . . a

k2n
ipnq. It is possible

that p2 � H.
If C contains the pair positioner partition [{�[, then p P C if and only if
p2 P C.

Proof. (a) If kj ¥ 3, we compose p with the pair partition to erase two of the
neighbouring aipjq-points. Since this operation can be done iteratively and
inside the category C, we infer that p1 P C whenever p P C. For the converse, we
compose p1 with |bα b[b |bβ for suitable α, β, such that the pair is situated
right beside one of the aipjq-points of p1. By Lemma 6.2.6(a), we can connect
these two points to the block to which aipjq belongs, which yields a partition p̃1
where the power kj of aipjq is increased by two. By this procedure, we construct
p out of p1 inside the category C.

(b) Assume first that p2 � H. If p P C, then p2 P C again by using the pair
partition [. For the converse, insert pair partitions [ at every position in p2
where k2j � 0. By Lemma 6.2.6(b), we can connect these pairs to the according
blocks of p2 such that we obtain a partition p1 as in (a). Since the four block
[[[ is in C (see Lemma 6.2.4), we conclude p P C using (a).

Secondly, if p2 � H, then all exponents kj of p are even. All interval partitions
q � q1 b . . . b qm, where every partition qj consists of a single block of even
length respectively, are in C. Using the fat crossing partition

[[

�[[ (which is in
C by Lemma 6.2.4), the partition p may be obtained from a suitable interval
partition q, by composition. Thus, p P C.

Lemma 6.2.7(b) will be crucial for the study of simplifiable quantum groups in
the sequel.

Remark 6.2.8. Lemma 6.2.7 can be extended to arbitrary partitions p P P pk, lq,
by rotation.

In simplifiable categories, we have a notion of equivalence of partitions according
to Lemma 6.2.7(b).

Definition 6.2.9. Two partitions p, q are called equivalent, if q can be obtained
from p by the following operations:

• Elimination of two consecutive points belonging to the same block.
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• Insertion of two consecutive points into the partition at any position and
either connecting it to any other block – or not.

Example 6.2.10. Both of the following partitions

are equivalent to the rotation of the half-liberating partition:

Lemma 6.2.11. Let C be a simplifiable category and p P C. Let q be a partition
that is equivalent to p. Then q P C.

Proof. See Lemma 6.2.7(b).

The category x [{�[y is the base case for the simplifiable categories of partitions,
i.e. it is contained in all simplifiable categories. We show now that the category
x

[[

�[[y is a base case for all hyperoctahedral categories that contain at least one
crossing partition.

Proposition 6.2.12. Let C be a hyperoctahedral category of partitions with
C � x[[[y. Then the fat crossing partition

[[

�[[ is in C.

Proof. We show that one of the following cases hold for C:

•

[[

�[[P C.

• [{�[P C.

• hs P C for some s ¥ 3.

By Lemma 6.2.4 this will complete the proof.

The only hyperoctahedral category of non-crossing partitions is x[[[y. Thus, C
contains a partition p P P zNC with a crossing. We may assume that p consists
only of two blocks b1 and b2, after connecting all other blocks with one of the
crossing blocks, using Lemma 6.2.6(a). Furthermore, we may assume that no
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three points in a row are connected by one of the blocks, by Lemma 6.2.7(a).
Hence, we may write p as

p � ak1bk2ak3bk4 . . . akn or p � ak1bk2ak3bk4 . . . bkn

where ki P t1, 2u and n ¥ 4, and a and b correspond to the points connected by
the blocks b1 resp. b2. Note that the length of p is even (otherwise we could
construct the singleton Ò using the pair partition).

If all ki � 1, then p � hs for some s ¥ 2 – the case p � h2 implying all other
cases of the claim. Otherwise, we may assume k1 � 2 by rotation. If n ¥ 5, we
may erase the two points ak1 using the pair partition and we obtain a partition
p1 P C which still has a crossing. Iterating this procedure, we either end up with
a partition hs for some s ¥ 2 or with a partition p P C such that k1 � 2 and
n � 4. In the latter case, p is of length six or eight. There are exactly four
cases of such a partition:

• p � aababb – An application of the pair partition would yield Ò b ÒP C
which is a contradiction.

• p � aabaab – This is a rotated version of [{�[.
• p � aabbab – Again this would yield Ò b ÒP C.

• p � aabbaabb – This is
[[

�[[ in a rotated version.

Remark 6.2.13. Since x

[[

�[[y contains a crossing partition, we have x[[[y �
x

[[

�[[y. Furthermore, we have x

[[

�[[y � x [{�[y by Lemma 6.2.4. For the proof of
x

[[

�[[y � x [{�[y we refer to Section 6.5.

6.2.3 The single leg form of a partition

The pair positioner partition [{�[ allows us to simplify the classification problem,
since we can reduce to partitions of a nicer form.

Definition 6.2.14. A partition p P P is in single leg form, if p is – as a word –
of the form

p � aip1qaip2q . . . aipnq ,

where aipjq � aipj�1q for j � 1, . . . , n� 1. The letters a1, . . . , ak correspond to
the points connected by the partition p. In other words, in a partition in single
leg form no two consecutive points belong to the same block.
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Let C be a category of partitions (or simply a set of partitions). We denote
by Csl the set of all partitions p P C in single leg form. By Psl, we denote the
collection of all partitions in single leg form.
Lemma 6.2.15. Let C be a hyperoctahedral category and let p P Csl be a
partition in single leg form. Then, every letter in the word p appears at least
twice. Furthermore, every word in Csl consists of at least two letters, it has
length at least four, and it is of even length.

Proof. The double singleton Ò b Ò is not contained in C.

If p P P p0, lq is a partition seen as the word p � ak1
ip1qa

k2
ip2q . . . a

kn
ipnq, the partition

p2 � a
k21
ip1qa

k22
ip2q . . . a

k2n
ipnq of Lemma 6.2.7(b) is not necessarily in single leg form,

e.g. p � ab2acacaca yields p2 � a2cacaca. However, a finite iteration of the
procedure as in Lemma 6.2.7(b) either yields a partition q in single leg form or
the empty partition H P P p0, 0q. This partition q (possibly the empty partition)
is called the simplified partition associated to p. Note that every partition has a
unique simplified partition – the converse is not true. We can state a variation
of Lemma 6.2.7(b).
Lemma 6.2.16. Let C be a simplifiable category of partitions. Then, a partition
is in C if and only if its simplified partition is in C.
Remark 6.2.17. Every partition p P P is equivalent to its simplified partition
p2 P P in single leg form and two partitions are equivalent if and only if their
simplified partitions agree. If p P P is in single leg form, then the simplified
partition associated to p is p itself.

The set Csl turns out to be a complete invariant for the simplifiable categories.
Proposition 6.2.18. Let C and D be simplifiable categories.

(a) The category xCsl, [{�[y coincides with C.

(b) We have Csl � Dsl if and only if C � D.

(c) We have Csl � Dsl if and only if C � D.

Proof. (a) We have xCsl, [{�[y � C. On the other hand, if p P C, we consider its
associated simplified partition p2 P C by Lemma 6.2.16. Thus, p2 P xCsl, [{�[y.
Again by Lemma 6.2.16, we also have p P xCsl, [{�[y.

As a consequence, we can choose the generators of a simplifiable category always
to be in single leg form. In the sequel, we will classify the subclass of simplifiable
easy quantum groups by classifying the sets Csl.
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6.3 A group theoretic framework for hyperoctahe-
dral categories of partitions

Denote by L � ta1, a2, . . . u an infinite countable number of letters. Let p be a
partition with n blocks and choose a labelling l � paip1q, aip2q, . . . , aipnqq of the
blocks of p with pairwise different letters. Denote by wpp, lq the word of FL
obtained by considering p as a word with letters given by l starting in the top
left corner of p and going around clockwise. Note that mutually different blocks
are labelled by mutually different letters. We write G � Z�L2 for the infinite
free product of the cyclic group of order 2 indexed by the letters in L. The
canonical surjection FL � G is denoted by π.

The next observation describes the basic link between partitions and elements
of G.

Lemma 6.3.1. (i) Two partitions p and q are equivalent, if and only if
πpwpp, lqq � πpwpq, l1qq for some labellings l and l1.

(ii) Let C be a simplifiable category of partitions, and let p P C with πpwpp, lqq �
e (where e denotes the neutral element in G). Then there is a partition
H � q P C in single leg form and a labelling l1 such that πpwpq, l1qq �
πpwpp, lqq.

Proof. (i) This follows from the fact, that two words w and v in FL have the
same image under π if and only if there is a sequence w1, . . . , wn with w1 � w
and wn � v such that wi�1 arises from wi by inserting or deleting a square of a
letter in L.

(ii) The simplified partition p2 associated to p is in C by Lemma 6.2.16. By (i)
and Remark 6.2.17 we get the result. Note that p2 � H since πpwpp, lqq � e.

Definition 6.3.2. Let C be a simplifiable category of partitions. We denote
by F pCq the subset of G formed by all elements πpwpp, lqq where p P C and l
runs through all possible labelling of p with letters a1, a2, . . . .

Denote by PpXq the power set of a set X. We consider the commutative
diagram

PpFLq π̃ÝÑ PpGq
w Ò w1 Ò
PpP q RÝÑ PpPslq,

where the maps are given as follows:
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• The map π̃ is induced by the group homomorphism π : FL Ñ G, so
π̃pAq :� tπpxq P G|x P Au for A � FL.

• The map w is given by the above labelling of a partition with any possible
choice of letters in FL, thus for a subset A � P of partitions, we have

wpAq � twpp, lq P FL|p P A, l � paip1q, aip2q, . . . , aipnqq

a labelling with pairwise different lettersu .
Note that we only use the generators ai of FL as letters and not their
inverses a�1

i .

• The map R is given by simplification of partitions. To a partition p P P ,
we assign its simplified partition p2 P Psl, which is possibly the empty
partition. Hence

RpAq � tp2 P Psl | p2 is the simplified partition of a partition p P Au .
If C is a simplifiable category, then RpCq � Csl.

• The map w1 is given by the labelling of partitions p in single leg form
with any possible choice of letters in G, analogous to the map w.

We observe, that the procedure R of simplifying partitions to single leg partitions
corresponds to the group homomorphism π, resp. to π̃. Furthermore, if C is
a simplifiable category and πpwpp, lqq � e is an element in π̃ � wpCq for some
partition p P C with some labelling l, we may always assume that p is in single
leg form. (See Lemma 6.3.1)

We are going to study the structure of pπ̃ � wqpCq for a simplifiable category of
partitions C. For this, we translate the category operations to operations in FL
resp. in G.

Lemma 6.3.3. Let C be a simplifiable category of partitions. Then:

(i) If the word g � b1 . . . bn is in wpCq, then the reverse word g1 � bn . . . b1 is
in wpCq.

(ii) If g, h P wpCq, then gh P wpCq.
(iii) pπ̃ � wqpCq � G is a subgroup of G.

Proof. (i) Let g � wpp, lq for some partition p P C and some labelling l. Thus,
wpp, lq is the word given by labelling the partition p starting in the top left
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corner and going around clockwise. Since C is a category, the partition p� is in
C, given by turning p upside down. Labelling p� with the letters from l starting
in the lower left corner and going counterclockwise yields the reverse word
g1 � wpp�, l�q. Here, l� � paipnq, . . . , aip1qq denotes the labelling of a partition
in an order reverse to the one of the labelling l. Thus, g1 P wpCq.
(ii) Let g � wpp, lq and h � wpq, l1q, where p, q P C, l � paip1q, . . . , aipnqq, and
l1 � pajp1q, . . . ajpmqq. By rotation, we may assume that p and q are partitions
with no lower points. If all letters of l and l1 are pairwise different, then
gh � wppb q, ll1q, where ll1 is the labelling ll1 � paip1q, . . . , aipnq, ajp1q, . . . ajpmqq.
Otherwise, denote by M the set of all pairs pα, βq in t1, . . . nu � t1, . . .mu such
that ipαq � jpβq. Then gh is obtained from the labelled partition that is
constructed by the following:

• Consider the tensor product pb q,

• label this partition with the letters aip1q, . . . aipkq, ajp1q, . . . , ajplq,

• now for every pα, βq PM join the α-th block of p with the β-th block of q.

The resulting partition r is in C (by Lemma 6.2.6(b)) and gh � wpr, l2q with
the above labelling l2.

(iii) If πpgq P π̃ � wpCq for g P wpCq, then πpgq�1 � πpg1q P π̃ � wpCq by (i). By
(ii) π̃ � wpCq is closed under taking products.

Definition 6.3.4. We denote by F the restriction of π̃ � w to the set of all
simplifiable categories of partitions as a map with image in the subgroups of G.

This map F transfers the problem of classifying the simplifiable categories of
partitions to a problem in group theory.

6.3.1 The correspondence between simplifiable categories and
subgroups of Z�82

We will give a description of the image of F in terms of subgroups of G � Z�L2
that are invariant under certain endomorphisms. This is the content of Theorem
6.3.10. Let us prepare its formulation.

Definition 6.3.5. Let S0 be the subsemigroup of EndpGq generated by the
following endomorphisms.
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1. Finite identifications of letters, i.e. for any n P N and any choice of indices
ip1q, . . . , ipnq the map #

ak ÞÑ aipkq 1 ¤ k ¤ n ,
ak ÞÑ ak k ¡ n .

2. Conjugation by any letter ak, i.e. the map w ÞÑ ak � w � ak.
Definition 6.3.6. Denote by E the subgroup of G consisting of all words of
even length.

Proper S0-invariant subgroups of G and E are described in the following lemma.

Lemma 6.3.7. E is the unique maximal proper S0-invariant subgroup of G.
Furthermore, every proper S0-invariant subgroup of E contains only words in
which every letter a1, a2, . . . appears not at all or at least twice. (Note that in
E itself, there are words where a letter appears only once.)

Proof. Firstly, note that E has index 2 in G, so it is a maximal proper subgroup
of G. Secondly, it is S0-invariant. Now, if an S0-invariant subgroup H ¤ G
contains a word with an odd number of letters, say 2n � 1, we may use the
identification of letters from Definition 6.3.5(i) in order to obtain a1 � a2n�1

1 P H.
With a1 P H, it follows that ai P H for all i and hence H � G.

Let H ¤ E be an S0-invariant subgroup and assume that there exists an element
w P H where w contains a letter ai only once. Using identification of letters,
we may assume that i � 1 and all other letters are the same, say a2. We obtain
a1a2 P H or a2a1 P H, thus aiaj P H for all i, j. Now let w P E be arbitrary.
We can write

w � aip1qaip2q � � � aip2nq � paip1qaip2qqpaip3qaip4qq � � � paip2n�1qaip2nqq P H ,

for some indices ip1q, ip2q, . . . , ip2nq. So H � E and we have finished the
proof.

Lemma 6.3.8. For any simplifiable category of partitions C, F pCq is a proper
S0-invariant subgroup of E.

So F is a well-defined map from simplifiable categories of partitions to proper
S0-invariant subgroups of E. Moreover, F is a lattice homomorphism.

Proof. By Lemma 6.3.3 F pCq is a subgroup of G. Since all partitions in C are
of even length, F pCq is a subgroup of E.
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Assume that F pCq � E. Then F pCq contains an element in which some letter
appears only once. Hence, in C there is a partition with a singleton. Thus C is
not hyperoctahedral, which is a contradiction. We have shown that F pCq is a
proper subgroup of E.

We show that F pCq is invariant under the generating endomorphisms of S0 in
Definition 6.3.5. Let g � πpwpp, lqq be an element in F pCq constructed from a
partition p P C. It is clear that we can change a letter in g, if the new letter did
not appear in g before – this simply corresponds to πpwpp, l1qq with a different
labelling l1. If the new letter already appeared in g, we connect two blocks of
p using Lemma 6.2.6. This shows that F pCq is closed under identification of
letters.

Furthermore, F pCq is closed under conjugation with a letter ak. Indeed, let
e � g � πpwpp, lqq � aip1q . . . aipmq be an element in F pCq. Assume that p is a
partition in single leg form with no lower points (see Lemma 6.3.1). If the letter
ak does not appear in the word aip1q . . . aipmq, we consider the partition

p1 � p ,

i.e. the partition obtained from p by nesting it into a pair partition [. Labelling
this partition with l1 � pak, ajp1q, . . . , ajpnqq for l � pajp1q, . . . , ajpnqq yields
akgak � πpwpp1, l1qq in F pCq. On the other hand, if the letter ak appears in the
word aip1q . . . aipmq, we have four cases.

• If ip1q � k and ipmq � k, we connect the outer pair partition of p1 with
the block of p which corresponds to the letter ak (see Lemma 6.2.6). The
resulting partition p2 yields akgak � πpwpp2, l2qq in F pCq for a suitable
labelling l2.

• If ip1q � k and ipmq � k, the element akgak is given by akgak �
aipmqaip1q . . . aipm�1q (as a2

k � e). Therefore, we consider the labelled
partition p in a rotated version, which yields akgak P F pCq. Likewise in
the case ip1q � k and ipmq � k.

• If ip1q � k and ipmq � k, the element akgak equals aip2q . . . aipm�1q.
On the other hand, the very left point and the very right point of p
belong to the same block, so, rotating one of them next to the other and
erasing them using the pair partition yields a partition p2 P C such that
akgak � πpwpp2, l2qq for a suitable labelling l2.
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Finally note that, since π̃ � w preserves inclusions, its restriction F is a lattice
homomorphism.

The preceding lemma specifies that we can associate an S0-invariant subgroup
F pCq of E to any simplifiable category C of partitions – but we can also go back.
In fact, every proper S0-invariant subgroup of E comes from such a category.
This is worked out in the sequel.

Lemma 6.3.9. For any proper S0-invariant subgroup H of E, the set

CH :� w�1pπ�1pHqq

� tp P P | there is a labelling l such that πpwpp, lqq P Hu � P

is a simplifiable category of partitions.

Proof. The pair partition [, the unit partition |, the four block partition [[[,
and the pair positioner partition [{�[ are all in CH , since they are mapped to
the neutral element e P H for any labelling l.

Let p and q be partitions in CH and denote by g :� πpwpp, lqq and h :� πpwpq, l1qq
some corresponding elements in H for some labellings l and l1. Since H is
invariant under permutation of letters we can assume that the labellings l and
l1 are such that g and h do not share any letter. The element g may be written
as g � g1g2, where g1 corresponds to the labelling of the upper points of p, and
g2 to the lower points of p. Consider the tensor product p b q of p and q as
labelled partitions, i.e. we form pb q and label it by a labelling l2 such that
the subpartition p in p b q is labelled by l and the subpartition q is labelled
by l1. Then, the element πpwppb q, l2qq is of the form g1hg2. (Recall that the
labelling procedure starts at the upper left point of a partition and goes around
clockwise – thus, in pb q the upper points of p are labelled first, then the whole
of q is labelled, and we finish by labelling the lower points of p.) As H is closed
under conjugation, the element g1hg

�1
1 is in H, so is g1hg2 � g1hg

�1
1 g. Hence,

pb q P CH , and CH is closed under tensor products.

The set CH is also closed under involution, since for p P CH with πpwpp, lqq �
g P H, we have πpwpp�, l�qq � g�1 P H, where l� denotes the labelling l in
reverse order. It is also closed under rotation, since moving points (from above
to below or the converse) at the right hand side of a partition p does not change
the labelling – and hence πpwpp, lqq is invariant under this operation. Moving
points at the left hand side of p is reflected by conjugating πpwpp, lqq with the
first respectively with the last letter of this word.
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It remains to show that CH is closed under the composition of partitions. We
first show that CH is closed under composition with a partition of the form

� � � � � �
.

Let p P CH be a partition on k upper points and m lower points and consider
the partition || � � � |\|| � � � | on m upper points and m � 2 lower points, where
\ connects the i-th and the pi� 1q-st point. Denote their composition by p1.
There is a labelling l such that g :� πpwpp, lqq is in H. For a suitable labelling
l1, the element πpwpp1, l1qq arises from g by identifying the pk � iq-th and the
pk � i� 1q-st letter. Since H is invariant under this operation, the partition p1
is in CH .

It remains to reduce the composition of arbitrary partitions to the previous
case. Let p P CH be a partition on k upper and l lower points, and let q P CH be
on l upper and m lower points. Write p1 and q1 for the partitions arising from
p and q, respectively, by rotating their lower points to the right of the upper
points. Then p1 and q1 are both in CH . Composing p1 b q1 with the partition

� � �
� � �

� � �
k strings on the left,
l pair partitions nested into
each other, and m strings on
the right

yields a partition p2 P CH on k �m points. Rotating m points on the right of
p2 to below gives the composition pq of p and q, which hence is in CH .

We conclude that CH is closed under the category operations, hence it is a
category of partitions, containing [{�[. On the other hand, the partition Ò b Ò
is not in CH , since πpwpÒ b Ò, lqq is a word of the form ab, where a and b are
different letters in G. By Lemma 6.3.7, these elements are not in H. Thus, CH
is simplifiable.

We show now that the map H ÞÑ CH is the inverse of F .

Theorem 6.3.10. The maps F and H ÞÑ CH are inverse to each other. Hence,
the map F is bijective as a map from simplifiable categories of partitions onto
proper S0-invariant subgroups of E.
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Proof. Firstly, let H be a proper S0-invariant subgroup of E, and let x P H.
Denote by p the partition connecting the letters of the word x if and only if
they coincide, and let l be the labelling such that πpwpp, lqq � x. Thus, p P CH
and hence x P F pCHq. (Recall that x P F pCq if and only if x � πpwpp, lqq for
some p P C and some labelling l.) Conversely, let x � πpwpp, lqq P F pCHq where
p P CH . By definition, there is a labelling l1 such that πpwpp, l1qq P H. Now, H
is invariant under exchange of letters, thus x � πpwpp, lqq P H. We deduce that
H � F pCHq.
Secondly, let C be a simplifiable category of partitions, and let p P C. Then
πpwpp, lqq P F pCq for any labelling l, and hence p P CF pCq. On the other
hand, for p P CF pCq there is a labelling l such that πpwpp, lqq P F pCq. Thus,
πpwpp, lqq � πpwpq, l1qq for some partition q P C and some labelling l1. By
Lemma 6.3.1 and Lemma 6.2.11, we have p P C. This finishes the proof of
C � CF pCq.

6.4 Classification and structural results for easy
quantum groups

In this section we deduce from Theorem 6.3.10 that there are uncountably many
different simplifiable categories. We end this section by giving structural results
on the lattice of simplifiable quantum groups.

6.4.1 The classification of simplifiable categories by invariant
subgroups of F8

We can identify E ¤ Z�82 with a free group and describe the restriction of
endomorphisms from S0 to E. This is the content of the next lemma.

Lemma 6.4.1. We put xk :� a1ak�1 for k � 1, 2, . . . Then x1, x2, . . . is a free
basis of E. The restriction tφ|E |φ P S0 � EndpGqu of endomorphisms to E is
the semigroup generated by

1. finite identifications of letters, i.e. for any n P N and any choice of indices
ip1q, . . . , ipnq the map #

xk ÞÑ xipkq 1 ¤ k ¤ n ,
xk ÞÑ xk k ¡ n ,

2. for all i P N, the map defined by xk ÞÑ x�1
i � xk for all k P N,
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3. for all k P N, the map xk ÞÑ e that leaves all other letters invariant,

4. the map xk ÞÑ x�1
k for all k P N,

5. all inner automorphisms of E,

Proof. We have x�1
k � ak�1a1 for all k P N. So, every word of even length in G

can be written uniquely as a product of the elements x1, x
�1
1 , x2, x

�1
2 , . . . , so

x1, x2, . . . is a free basis for E.

We check that the endomorphisms (i)-(iv) are precisely the restrictions of the
generators of S0 as given in Definition 6.3.5. In order to obtain (i) it suffices to
consider the endomorphism of G defined by ak�1 ÞÑ aipkq�1 for 1 ¤ k ¤ n and
leaving all other letters invariant. For (ii), we have to consider the endomorphism
of G mapping a1 ÞÑ ai�1 and leaving all other letters invariant. For (iii), we
have to take the map ak�1 ÞÑ a1. We considered all possible endomorphisms
from item (i) in Definition 6.3.5. The endomorphisms in (iv) are obtained
by mapping ak�1 ÞÑ a1ak�1a1 and for all k P N. The conjugation by xi is
obtained by ak ÞÑ ai�1akai�1 for all k P N composed with the endomorphism
in (iv). Indeed xk � a1ak�1 is mapped to ai�1a1ak�1ai�1 � x�1

i x�1
k xi and

the endomorphism in (iv) maps this element to xixkx�1
i . We considered all

possible endomorphisms from both items (i) and (ii) in Definition 6.3.5, so the
restriction of S0 to E is equal to the semigroup described in the statement.

Note that the endomorphisms defined in the previous lemma depend on the
choice of the free basis x1, x2, . . . . Fixing this choice, we obtain an isomorphism
E � F8.
Definition 6.4.2. We denote by S the subsemigroup of EndpF8q generated
by the maps in Lemma 6.4.1.
Lemma 6.4.3. A subgroup of F8 is S-invariant, if and only if

1. it is closed under identification and deletion of letters,

2. for all i P N it is closed under the map xk ÞÑ x�1
i � xk for all k P N,

3. it is closed under the map xk ÞÑ x�1
k for all k P N,

4. and it is normal.

Proof. This is a translation of Lemma 6.4.1. Item (i) and (iii) of Lemma 6.4.1
correspond to item (i) here. The items (ii) correspond to each other, item (iv)
of Lemma 6.4.1 corresponds to item (iii) here and normality of an S-invariant
subgroup is the same as invariance under inner automorphism (item (v) of
Lemma 6.4.1).
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Theorem 6.3.10 can be now translated into the more convenient setting of
subgroups of F8.

Theorem 6.4.4. The map F of Definition 6.3.4 induces a lattice isomorphism
between simplifiable categories of partitions and proper S-invariant subgroups of
F8.

Proof. This follows from Theorem 6.3.10 and Lemma 6.4.1

The formulation of the previous theorem allows us to employ a well-known
subset of the S-invariant subgroups of F8. The next observation is essential for
the rest of this section.

Remark 6.4.5. Every fully characteristic subgroup (see Section 6.1.4 for a
definition) of F8 is S-invariant. Hence F induces a lattice embedding of proper
fully characteristic subgroups of F8 into simplifiable categories of partitions.

To close this section, let us ask whether or not also the other implication holds:
Is every S-invariant subgroup of F8 fully characteristic? We only have a partial
answer to this question.

Proposition 6.4.6. Every S-invariant subgroup of F8 that contains the
commutator x1x2x

�1
1 x�1

2 is fully characteristic.

Proof. It suffices to show that the map sending an S-invariant subgroup of F8 to
its fully characteristic closure is injective on subgroups containing x1x2x

�1
1 x�1

2 .
A proper S-invariant subgroupH ¤ F8 contains the commutator x1x

�1
2 x�1

1 x2 �
a1a2a3a1a2a3 if and only if the associated category of partitions contains the
half-liberating partition. Similarly, the s-mixing partition hs corresponds to
the element a1a2a1a2 . . . a1a2 (s repetitions), which is equal to xs1. So by
[232, Theorem 4.13], it suffices to prove that the fully characteristic subgroups
generated by x1x2x

�1
1 x�1

2 and xs1 are pairwise different for different s P Nzt1u.
By the fact that the group Z{sZ is abelian and has exponent s but not exponent
s1 for s1   s, invoking the correspondence between fully characteristic subgroups
of F8 and varieties of groups from Theorem 6.1.8, we finish the proof.

6.4.2 Classification results for easy quantum groups

The link between the theory of varieties of groups and easy quantum groups is
given by Theorem 6.4.4 and Remark 6.4.5. Let us state this more precisely.

Theorem 6.4.7. There is a lattice injection from the lattice of non-empty
varieties of groups into the lattice of simplifiable easy quantum groups.
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Proof. The lattice of simplifiable quantum groups is anti-isomorphic to the
lattice of simplifiable categories of partitions. Theorem 6.4.4 shows that the
latter lattice is isomorphic to the lattice of proper S-invariant subgroups
of F8. By Remark 6.4.5, there is an injection of lattices of proper fully
characteristic subgroups of F8 into the lattice of proper S-invariant subgroups
of F8. The former is anti-isomorphic with the lattice of non-empty varieties
of groups by Theorem 6.1.8. Composing these isomorphisms, injections and
anti-isomorphisms, we obtain an injection of lattices as in the statement of the
theorem.

Remark 6.4.8. The proof of the previous theorem also shows that there is a
one-to-one correspondence between varieties of groups and certain simplifiable
categories of partitions. We hence obtain a combinatorial and a quantum group
perspective on varieties of groups.

The correspondence from the last theorem allows us to translate known results
about varieties of groups into statements about easy quantum groups. Let us
start with some results about the classification of easy quantum groups.

In [17], the question was raised whether or not all easy quantum groups are
either classical, free, half-liberated or form part of a multi-parameter family
unifying the series of quantum groups Hpsq

n and H
rss
n . We can answer this

question in the negative.

Theorem 6.4.9. There are uncountably many pairwise non-isomorphic easy
quantum groups.

This follows directly from Theorem 6.4.7 and the following result by Olshanskii.

Theorem 6.4.10 (See [148]). The class of varieties of groups has cardinality
equal to the continuum.

Easy quantum groups offer a class of examples, which is concretely accessible
by means of combinatorics. Therefore, it would be good to amend Theorem
6.4.9 with concrete examples. Unfortunately, partitions are not well-suited to
represent higher commutators in E. We therefore omit a concrete translation of
the following result of Vaughan-Lee. The notation rx1, x2, x3, . . . , xns denotes
the higher commutator rrr� � � rrx1, x2s, x3s, x4s, . . . s, xns.
Theorem 6.4.11 (See [221]). Let x, y, z, x1, x2, . . . be a free basis of F8.
Denote wk � rrx, y, zs, rx1, x2s, rx3, x4s, . . . , rx2k�1, x2ks, rx, y, zss. Then the
fully characteristic subgroups of F8 generated by

twk | k P Iu Y tx16, rrx1, x2, x3s, rx4, x5, x6s, rx7, x8ssu , I � N

are pairwise different.
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It would be interesting to find an uncountable family of categories of partitions,
which is more natural from the point of view of combinatorics.

Remark 6.4.12. Given a certain class of objects that we want to classify up
to a given equivalence relation �, it is generally known that the cardinality of
the quotient set does not say a lot about the difficulty of the classification. The
difference between the classification of torsion free abelian groups of rank 1 [6]
and of rank ¥ 2 [130, 135, 204] is a classical instance of this fact. The theory
of Borel reducibility offers a better point of view on classification problems
of this kind. See [128] for an exposition. If R,S are equivalence relations on
Polish spaces X and Y , respectively, then R is called Borel reducible to S, if
there is a Borel map f : X Ñ Y such that x1 �R x2 ô fpx1q �S fpx2q. In
common terms, R is “easier” then S. We call R smooth, if it is reducible to the
equivalence relation of equality of points on some Polish space Y .

Denoting by P the set of all partitions, the space X � 2P of subsets of P is a
Polish space. Denote by RQG the equivalence relation on X making x1, x2 P X
equivalent, if and only if they generate the same category of partitions, i.e.
xx1y � xx2y. We show that RQG is smooth. From the point of view of
Borel complexity, this can be interpreted as saying that it is comparably easy
to decide whether two subsets of partitions generate the same category of
partitions. However, the lattice of easy quantum groups is not traceable, as
is demonstrated by Theorem 6.4.7. We thank Simon Thomas for pointing out
the following argument to us. The set CAT � X of categories of partitions is
a Borel subset and hence the Borel space CAT is isomorphic to the space of
Borel sets on some Polish space. Moreover, the map gen : X Ñ CAT sending
x P X to the category of partitions that it generates is Borel. It follows that
RQG is smooth.

For the sake of completeness, let us elaborate on the above argument. We show
that CAT � X is Borel and that gen is a Borel map. Consider the following
maps.

• Tens : X �X Ñ X defined by Tenspx, yq � tpb q | p P x, q P yu.
• Comp : X � X Ñ X defined by Comppx, yq � tpq | p P x and q P
y are composableu.

• � : X Ñ X : x ÞÑ tp� | p P xu.

Proving that the preimages of the sets tx P X | p P xu, where p runs through
all partitions, are Borel, one can show that all the maps above are Borel. Note
that the rotation operations of a category of partitions can be deduced from its
other properties (see Remark 1.6 of [232]). It follows that CAT � X is a Borel
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set, since it is the intersection of the fixed points of the above maps with the set
tx P X |x contains the identity partition | and the pair partition [u. It also
follows that x ÞÑ genpxq is Borel, since genpxq arises from x as the union of
countably many iterated applications of the above maps to xYt|bn |n P NuYt[u.
Remark 6.4.13. If pA, uq is a hyperoctahedral quantum group with associated
category of partitions C, then Ò b ÒR C. As a consequence, Hompu, uq is one
dimensional and hence u is an irreducible corepresentation of A. It follows
that the tensor C�-category of unitary finite dimensional corepresentations of
pA, uq is generated by a single irreducible element. So Theorem 6.4.9 gives
rise to many new tensor C�-categories, whose fusion rules are described by the
combinatorics of categories of partitions. It remains an interesting question to
determine these fusion rules.

6.4.3 Structural results for easy quantum groups

We position known hyperoctahedral quantum groups in the context of varieties
of groups. See also Example 6.1.7.

Example 6.4.14. 1. The variety of all groups corresponds to the trivial
subgroup of F8, which in turn corresponds to the maximal simplifiable
quantum group Hr8s

n (resp. to the category x [{�[y).
2. By Proposition 6.4.6, the category x�pp ,[[[y corresponds to the

commutator subgroup of F8. So Example 6.1.7(ii) shows that the quantum
group H�

n corresponds to the variety of all abelian groups.

3. By the same Proposition and Examples 6.1.7 (ii) and (iii), the categories
x�pp ,[[[, hsy correspond to the fully characteristic subgroup of F8
generated by the commutator subgroup and xs1. It follows that the
easy quantum group H

psq
n , s ¥ 2 corresponds to the variety of abelian

groups of exponent s. Note that Hp2q
n � Hn is a group.

We end this section by giving two structural results regarding the classification
of simplifiable quantum groups.

For a simplifiable category C denote by C0 its intersection with x�pp ,[[[y. The
following theorem generalises Theorem 4.13 of [232].

Proposition 6.4.15. Every simplifiable easy quantum group G is either an
intermediate quantum subgroup H�

n � G � H�
n or it is the intersection of

some H�
n � G0 � H�

n and H
rss
n for some s ¥ 2. Equivalently, for every

simplifiable category C that is not contained in x�pp ,[[[y, there is s ¥ 2 such
that C � xC0, hsy.
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Proof. Take a simplifiable category C that does not contain the crossing partition.
Let H ¤ F8 be the S-invariant subgroup of F8 associated with C by Theorem
6.4.4.

Take w P H. The exponent of xi in w is by definition the sum of the powers
of xi that appear in w. Denote by ei the exponent of xi. For all i, we obtain
xeii P H, by applying to w the endomorphism of F8 that erases all letters of
w except for xi. For later use, note that since rF8,F8s is the kernel of the
abelianisation map F8 Ñ Z8, we can write for some n P N and for some word
c P H X rF8,F8s

w � xe11 � � �xenn px�enn � � �x�e11 wq � xe11 � � �xenn c .

Let s be the minimal number such that xs1 P H. By the previous decomposition
of words we see that H is generated as an S-invariant subgroup by xs1 and by
H X rF8,F8s. Appealing to the correspondence between simplifiable categories
of partitions and S-invariant subgroups of F8 in Theorem 6.4.4, we have finished
the proof.

Proposition 6.4.16. Every simplifiable quantum group G � Hn has Hpsq
n as

a quantum subgroup for some s ¥ 3. Equivalently, every simplifiable category of
partitions that does not contain the crossing {z is contained in x�pp ,[[[, hsy for
some s ¥ 3.

Proof. This follows from Proposition 6.4.15: let G � Hn be a simplifiable
quantum group. Then either G contains H�

n or it contains Hpsq
n � H�

n XH
rss
n

for some s ¥ 3.

6.5 The C�-algebras associated to the simplifiable
categories

Given a category of partitions C, we denote by pACpnq, unq the compact matrix
quantum group with fundamental corepresentation of size n�n associated with
C. In this section, we study the C�-algebras associated with the categories
C � x [{�[y, denoted by ACpnq � CpHr8s

n q. We also study the C�-algebras ACpnq
for C � x

[[

�[[y, since some of their theory is similar.

Recall that the hyperoctahedral quantum group H�
n corresponds to the category

x[[[y. If G � O�
n is a compact quantum subgroup of O�

n and u denotes the
fundamental corepresentation of CpGq, then the map Tp for p �[[[ is in the
intertwiner space Homp1, ub4q if and only if uikujk � ukiukj � 0 whenever
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i � j. Hence, this relation is fulfilled for all compact quantum subgroups
G � H�

n . We also have
°
k u

2
ik �

°
k u

2
kj � 1, as well as uij � u�ij , for all i, j

(see [232] for the relations of CpH�
n q).

Recall also the definition of the linear maps Tp : pCnqbk Ñ pCnqbl indexed by
a partition p P P pk, lq:

Tppeip1q b � � � b eipkqq �
ņ

jp1q,...,jplq�1
δppi, jq � ejp1q b � � � b ejplq .

Here, e1, . . . , en is the canonical basis of Cn, and δppi, jq � 1 if and only if the
indices of i � pip1q, . . . , ipkqq and j � pjp1q, . . . , jplqq that are connected by the
partition p coincide. Otherwise δppi, jq � 0. (cf. [24, Definitions 1.6 and 1.7])

Lemma 6.5.1. Let G � H�
n be a compact quantum subgroup of H�

n and denote
by CpGq its corresponding C�-algebra generated by the entries of the fundamental
corepresentation uij, i, j � 1, . . . , n. Then

1. Tp P Hompub4, ub4q for p �

[[

�[[ if and only if u2
iju

2
kl � u2

klu
2
ij for all

i, j, k, l.

2. Tp P Hompub3, ub3q for p � [{�[ if and only if uiju2
kl � u2

kluij for all
i, j, k, l.

Proof. Compare ub4pTpb 1q with pTpb 1qub4 for (i) and analogous for (ii).

We will now describe the C�-algebras corresponding to the categories x

[[

�[[y andx [{�[y.
Proposition 6.5.2. The C�-algebras ACpnq associated with x

[[

�[[y and x

[{�[y
are universal C�-algebras generated by elements uij, i, j,� 1, . . . , n such that

1. the uij are local symmetries (i.e. uij � u�ij and u2
ij is a projection),

2. the projections u2
ij fulfill

°
k u

2
ik �

°
k u

2
kj � 1 for all i, j,

3. in the case C � x

[[

�[[y, we also have u2
iju

2
kl � u2

klu
2
ij for all i, j, k, l,

4. in the case C � x [{�[y, we even have u2
ijukl � uklu

2
ij for all i, j, k, l.

Proof. The C�-algebras ACpnq fulfill the relations of CpH�
n q, the C�-algebra

associated with the free hyperoctahedral quantum group H�
n . It follows that
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u2
ij is a projection, since u2

ij � u2
ijp

°
k u

2
ikq �

°
k uijpuijuikquik � u4

ij . Lemma
6.5.1 shows that in addition the relations (iii) or (iv) hold, respectively.

In order to show, that ACpnq is universal with the above relations, note that
CpH�

n q is universal with the relations in (i) and (ii). So ACpnq is the quotient
of this universal C�-algebra, by the relations imposed by Lemma 6.5.1. So it is
the universal C�-algebra for the relations (i), (ii) and (iii) or (i), (ii) and (iv),
respectively.

This proposition shows that the elements u2
ij fulfill the relations of Sn, the

(classical) permutation group (or rather of CpSnq). The squares of the elements
uij of the above C�-algebras ACpnq thus behave like commutative elements,
whereas the uij itself behave like free elements. The quantum groups ACpnq are
hence somewhat in between the commutative and the (purely) non-commutative
world.

Remark 6.5.3. From the description of their C�-algebras in Proposition 6.5.2,
we can deduce that x

[[

�[[y � x [{�[y by showing that the canonical quotient
map from ACpnq to AC1pnq for C � x

[[

�[[y, C1 � x [{�[y is not an isomorphism.
Indeed take n � 3 and let H � C3 with its canonical basis e1, e2, e3. Denote
by pi the projection of H onto Cei, i P t1, 2, 3u. We define operators wij ,
1 ¤ i, j ¤ 3 on H, which define a representation of ACpnq but not of AC1pnq. Let
w11e1 � e2, w11e2 � e1 and w11e3 � 0 and w22 � p1. Then w2

11w
2
22 � w2

22w
2
11,

but w11w
2
22 � w2

22w11. Define

w21 � w12 � p3 , w31 � w13 � 0

w23 � w32 � p2 , w33 � p1 � p3 .

Then pwijqij induces a representation of ACpnq, which does not factor through
ACpnq Ñ AC1pnq.

Remark 6.5.4. 1. If π : CpHr8s
n q Ñ BpHq is an irreducible representation,

the projections πpu2
ijq are either 1 or 0, since they commute with all

elements of πpCpHr8s
n qq. Since

°
k πpu2

ikq �
°
k πpu2

kiq � 1, there is a
permutation γ P Sn such that πpu2

ijq � 1, if γpiq � j, and πpu2
ijq � 0,

otherwise. Recall, that the full group C�-algebra C�maxpZ�n2 q is isomorphic
to the n-fold unital free product of the C�-algebra C�maxpZ2q � C2.
The latter is the universal C�-algebra generated by a symmetry. Thus,
C�maxpZ�n2 q is the universal unital C�-algebra generated by n symmetries
w1, . . . , wn. So, the map π0pwiq :� πpuiγpiqq defines a representation of
C�maxpZ�n2 q.
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2. Vice versa, we can produce representations of CpHr8s
n q by permutations.

First note that the relations of CpHr8s
n q are invariant under permutation

of rows or columns of its fundamental corepresentation. Let π0 :
C�maxpZ�n2 q Ñ BpHq be a representation and let γ P Sn be a permutation.
The map CpHr8s

n q Ñ C�maxpZ�n2 q : uij ÞÑ δjγpiq � wi is well defined. So
πpuijq :� δjγpiqπ0pwiq defines a (not necessarily irreducible) representation
of CpHr8s

n q.

In the C�-algebra associated with a simplifiable category C, the relations on
the generators may be read directly from the partitions in single leg form. Let
p � aip1q � � � aipkq P P p0, kq be a partition without upper points in single leg
form. We consider p as a word in the letters a1, . . . , am (labelled from left to
right). If we replace the letters ai, 1 ¤ i ¤ m, in p by some choice of generators
uij , 1 ¤ i, j ¤ n, we obtain an element aip1q � � � aipkq P ACpnq; replacing the
letters by the according elements u2

ij yields a projection q P ACpnq.
Proposition 6.5.5. Let C be a simplifiable category and let p � aip1q � � � aipkq
be a partition in single leg form. The following assertions are equivalent:

1. p P C.

2. aip1q � � � aipkq � q in ACpnq for all choices ar P tuij | i, j � 1, . . . , nu,
1 ¤ r ¤ m, where q is the according range projection.

3. For some 1 ¤ s ¤ k, we have qaip1q � � � aipsq � qaipkq � � � aips�1q in ACpnq
for all choices ar P tuij | i, j � 1, . . . , nu, 1 ¤ r ¤ m, where q is the
according range projection.

Proof. The linear map Tp : CÑ pCnqbk associated with p is given by

Tpp1q �
ņ

ip1q,...,ipkq�1
δppiqeip1q b � � � b eipkq .

We have

ubkpTp b 1qp1b 1q �

ņ

ip1q,...,ipkq�1
eip1q b � � � b eipkq b

�� ņ

jp1q,...,jpkq�1
δppjq � uip1qjp1q � � � uipkqjpkq

�
,
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so that p P C, if and only if for all multi-indices i � pip1q, . . . , ipkqq the equation:
ņ

jp1q,...,jpkq�1
δppjq � uip1qjp1q � � � uipkqjpkq � δppiq

holds. Now, assume (i) and let us show (ii). Make a choice of ar P tuij | i, j �
1, . . . , nu for all r P t1, . . . ,mu. Then there are multi-indices i and j satisfying
δppiq � δppjq � 1 such that aip1q � � � aipkq � uip1qjp1q � � � uipkqjpkq. Let q be the
projection given by q :� u2

ip1qjp1q � � � u2
ipkqjpkq. Then

uip1qjp1q � � �uipkqjpkq � uip1qjp1q � � �uipkqjpkq�� ņ

rp1q,...,rpkq�1
δpprq � uipkqrpkq � � � uip1qrp1q

�

�

ņ

rp1q,...,rpkq�1
δpprq � uip1qjp1q � � � uipk�1qjpk�1q

pδjpkqrpkqu2
ipkqjpkqquipk�1qrpk�1q � � �uip1qrp1q

�
ņ

rp1q,...,rpkq�1
δpprq � δip1qrp1qu2

ip1qjp1q � � � δipkqrpkqu2
ipkqjpkq

� q .

This proves (ii). Conversely, assume (ii) and let i be any multi-index. If
δppiq � 0, then uip1qjp1q � � � uipkqjpkq � 0 for any multi-index j that satisfies
δppjq � 1, since in this product there are at least two local symmetries that
have mutually orthogonal support in the centre of ACpnq. Hence

ņ

jp1q,...,jpkq�1
δppjq � uip1qjp1q � � � uipkqjpkq � 0 .

Similarly, using the assumption (ii), if δppiq � 1, then

u2
ip1qjp1q � � � u2

ipkqjpkq �
#
uip1qjp1q � � � uipkqjpkq , if δppjq � 1 ,
0 , otherwise.

We obtain that
ņ

jp1q,...,jpkq�1
δppjq � uip1qjp1q � � � uipkqjpkq �

ņ

jp1q,...,jpkq�1
u2
ip1qjp1q � � � u2

ipkqjpkq � 1 .
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This proves (i). The assertions (ii) and (iii) are equivalent, since all projections
a2
r, 1 ¤ r ¤ m are absorbed by q and qaip1q � � � aipkq � aip1q � � � aipkq.

Let us recall the notion of a coopposite quantum group. If pA,∆q is a compact
quantum group, then its coopposite version is the quantum group pA,Σ �∆q,
where Σ : AbAÑ AbA is the flip. In particular, if pA, uq is a compact matrix
quantum group, its coopposite version is the compact matrix quantum group
pA, utq.
Corollary 6.5.6. Every easy quantum subgroup of pCpHr8s

n q, usimplq is
isomorphic to its coopposite version.

Proof. Let pACpnq, uq be an easy quantum subgroup of CpHr8s
n , usimplq with

corresponding category of partitions C. By Proposition 6.5.5, pACpnq, uq is the
universal C�-algebra such that

• all uij are local symmetries whose support is central in ACpnq and sums
up to 1 in every row and every column

• for any partition p � aip1q � � � aipkq P C and any choice of elements ar P
tuij | 1 ¤ i, j ¤ nu, 1 ¤ r ¤ m we have that aip1q � � � aipkq is a projection.

These relations are invariant under taking the transpose of u. So uij ÞÑ uji is a
*-automorphism of ACpnq. This finishes the proof.

Example 6.5.7. Let p be the word p � abcbcacb and consider the C�-algebras
associated with the category x [{�[, py. Note that the equation abcbcacb � 1 in
Z2 � Z2 � Z2 is equivalent to abcb � bcac. The idea is that Proposition 6.5.5
yields the commutation relations

uijuklursukl � uklursuijurs

in ACpnq with p P C “wherever it makes sense”. To be more precise, we have

quijuklursukl � quklursuijurs,

where q � u2
iju

2
klu

2
rs. By multiplying from left or right with the local symmetries

uij , ukl, and urs, we also obtain relations like for instance

quijuklursuklursuij � quklurs or uijuklursuklursuijursukl � q .

Remark 6.5.8. The K-theory for the C�-algebras associated with easy quantum
groups is relatively unknown. Voigt computed the K-theory for O�

n in [227] and
there are some small extensions of this result to other easy quantum groups in
[232]. Let us also mention [222].
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6.6 Diagonal subgroups and their quantum isome-
try groups

If C is a simplifiable category of partitions, the group F pCq from Theorem 6.3.10
can be recovered directly from pACpnq, unqn¥2. Vice versa, ACpnq arises as a
natural subgroup of the quantum isometry group of F pCq. This is explained by
the following results.
Definition 6.6.1. For H � Z�82 write

pHqn � tw P H |w only involves the letters a1, . . . , anu .
Definition 6.6.2. Given a compact matrix quantum group pA, uq, its diagonal
subgroup DiagpA, uq is the discrete group that is generated by the image of the
diagonal entries of u in the quotient C�-algebra A{xuij | i � jy.
Theorem 6.6.3. Let C be a simplifiable category of partitions. Then
DiagpACpnq, unq � Z�n2 {F pCqn

Proof. Let H be the diagonal subgroup of ACpnq. The C�-algebra ACpnq
is the quotient of Aopnq by the relations Tp b 1 � puonqbkpTp b 1q for all
p P C. Moreover, the diagonal subgroup of the free orthogonal quantum group
satisfies DiagpAopnq, uonq � Z�n2 . Denote by π the quotient homomorphism
ACpnq Ñ ACpnq{xuij | i � jy. Then there is a commuting diagram

pAopnq, uonq

��

// C�maxpZ�n2 q

��

pACpnq, unq
π

// C�maxpHq .

So H is the universal group generated by elements ai � πpuiiq, 1 ¤ i ¤ n of
order two that satisfy Tp b 1 � pπpunqqbkpTp b 1q for all p P C. Moreover, it
suffices to consider partitions p P C on one row. Let p P C be such a partition of
length k. Then Tp b 1 � ubkpTp b 1q. Hence, we have equality of

pTp b 1qp1b 1q �
ņ

ip1q,...,ipkq�1
δppiq � eip1q b � � � b eipkq b 1

and

ubkpTpb1qp1b1q �
ņ

ip1q,...,ipkq,
jp1q,...,jpkq�1

δppjq � eip1q b � � � b eipkq b uip1qjp1q � � � uipkqjpkq .
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Applying the projection π to both equations, we obtain that for all ip1q, . . . , ipkq
with δppiq � 1 we have πpuip1qip1qq � � � πpuipkqipkqq � 1. This shows that H �
Z�n{F pCqn.

Note that as a consequence of the last theorem the C�-algebra ACpnq is a
canonical extension of the full group C�-algebra C�maxpZ�n2 {F pCqnq.
Lemma 6.6.4. Let H be a subgroup of Z�82 . Then Z�82 {H � limÝÑpZ

�n
2 {pHqn, φnq,

where φn is defined by the diagram

Z�n2
ai ÞÑaiÝÑ Z�n�1

2

� �

pHqn φnÝÑ pHqn�1

.

Proof. By universality of inductive limits, we have to show that for any
compatible family of morphisms

Z�n2 {pHqn //

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Z�n�1
2 {pHqn�1 //

++VVVVVVVVVVVVVVVVVVVVVVVVVVVV
Z�n�2

2 {pHqn�2 //

%%JJJJJJJJJJJ

� � �

K

the induced map π : Z�82 Ñ K contains H in its kernel. This follows from the
fact that H � �

n¥1pHqn.

The following corollary says that for a simplifiable category of partitions, we can
recover F pCq directly from the diagonal subgroups of the family pACpnq, unqn¥2.

Corollary 6.6.5. Let C be a simplifiable category of partitions. Then F pCq �
kerpZ�82 Ñ limÝÑpDiagpACpnq, unqqq.

Proof. This follows from Theorem 6.6.3 and Lemma 6.6.4.

We can also recover pACpnq, unq directly from the group F pCq without passing
through the framework of partitions. This is done by considering quantum
isometry groups. By [17] the category x [{�[y gives rise to an easy quantum
group, denoted by Hr8s

n . It is the maximal simplifiable quantum group.
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Theorem 6.6.6. Let H ¤ E ¤ Z�82 be a proper S0-invariant subgroup of E.
Then the maximal quantum subgroup of pCpHr8s

n q, usimplq acting faithfully and
isometrically on C�maxpZ�n2 {pHqnq is pACH pnq, unq.

Proof. Denote by π : Z�n2 Ñ Z�n2 {pHqn the canonical quotient map and by
a1, . . . , an the canonical generators of Z�n2 . Since Hr8s

n is isomorphic to its
coopposite quantum group by Corollary 6.5.6, we may consider quantum
subgroups of pHr8s

n qcoop instead of Hr8s
n in the following. Let pA, uq be a

compact quantum subgroup of Hr8s
n such that pA, utq acts faithfully by

α : C�maxpZ�n2 {pHqnq Ñ C�maxpZ�n2 {pHqnq bA : πpaiq Ñ
¸
j

πpajq b uij

on C�maxpZ�n2 {pHqnq and preserves the length function l associated with the
generators πpa1q, . . . , πpanq. We show that pA, uq is a quantum subgroup of
pACH pnq, unq.
Since pA, uq is a quotient of pCpHr8s

n q, usimplq, Proposition 6.5.2 shows that the
entries uij of u are self-adjoint partial isometries, which are pairwise orthogonal
in every row and in every column and whose support projections are central. We
check the additional relations that are imposed on the uij by the fact that pA, utq
acts isometrically on C�maxpZ�n2 {pHqnq. For every word aip1q � � � aipkq P Z�n2 we
have

αpπpaip1q � � � aipkqqq �
ņ

jp1q,...,jpkq�1
πpajp1q � � � ajpkqq b uip1qjp1q � � � uipkqjpkq .

This expression has non-zero coefficients uip1qjp1q � � � uipkqjpkq only for those
pjp1q, . . . , jpkqq with lpπpajp1q � � � ajpkqqq � lpπpaip1q � � � aipkqqq. Using the fact
that lpπpaip1q � � � aipkqqq � 0 if and only if aip1q � � � aipkq P pHqn, this means in
particular that for all aip1q � � � aipkq R pHqn we have¸

ajp1q��� ajpkqPpHqn
uip1qjp1q � � � uipkqjpkq � 0 .

On the other hand, if aip1q � � � aipkq P pHqn then

αpπpaip1q � � � aipkqqq � αp1q � 1b 1 .

It follows that ¸
ajp1q��� ajpkqPpHqn

uip1qjp1q � � � uipkqjpkq � 1 .
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We proved that for all aip1q � � � aipkq P Z�n2 we have¸
ajp1q��� ajpkqPpHqn

uip1qjp1q � � � uipkqjpkq � δppiq � 1 ,

where p denotes the partition in CH that is associated with aip1q � � � aipkq.
Next, we claim that if uip1qjp1q � � � uipkqjpkq � 0, then the word ajp1q � � � ajpkq
arises from aip1q � � � aipkq by a permutation of letters. Recall that all uij are
self-adjoint partial isometries, which are pairwise orthogonal in every row and
every column and whose supports are central in ACH pnq. If 1 ¤ α, β ¤ k, we
can conclude from ipαq � ipβq and uip1qjp1q � � � uipkqjpkq � 0, that jpαq � jpβq.
Similarly, we conclude from jpαq � jpβq, that ipαq � ipβq. This proves our
claim.

Take now a partition p P C. By our claim, for any multi-index i � pip1q, . . . , ipkqq,
which satisfies δppiq � 0, we have

ņ

jp1q,...,jpkq�1
δppjq � uip1qjp1q � � � uipkqjpkq � 0

If i � pip1q, . . . , ipkqq satisfies δppiq � 1, we obtain, using the claim again,

ņ

jp1q,...,jpkq�1
δppjq � uip1qjp1q � � � uipkqjpkq

�
¸

ajp1q��� ajpkqPpHqn
uip1qjp1q � � � uipkqjpkq � 1 .

Summarising, we have
ņ

jp1q,...,jpkq�1
δppjq � uip1qjp1q � � � uipkqjpkq � δppiq .
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We infer that

ubkpTp b 1qp1b 1q �
ņ

ip1q,...,ipkq,
jp1q,...,jpkq�1

eip1q b � � � b eipkq b δppjq � uip1qjp1q � � � uipkqjpkq

�
ņ

ip1q,...,ipkq�1
eip1q b � � � b eipkqb

�� ņ

jp1q,...,jpkq�1
δppjq � uip1qjp1q � � � uipkqjpkq

�

�

ņ

ip1q,...,ipkq�1
eip1q b � � � b eipkq b δppiq � 1

� pTp b 1qp1b 1q .
We proved that pA, uq is a quantum subgroup of pACH pnq, unq.
Next we show that pACH pnq, punqtq acts faithfully and isometrically on
C�maxpZ�n2 {pHqnq. The map

α : C�maxpZ�n2 {pHqnq Ñ C�maxpZ�n2 {pHqnq bACH pnq : πpaiq ÞÑ
¸
j

πpajq b uij

is a well defined action of pACH pnq, punqtq on C�maxpZn2 {pHqnq, by the calculations
in the first part of the proof. By definition, it is faithful, so it remains to show that
it is isometric. We say that a word aip1q � � � aipkq is reduced in Z�n2 {pHqn, if there
is no k1   k and jp1q, . . . , jpk1q such that πpaip1q � � � aipkqq � πpajp1q � � � ajpk1qq. A
word aip1q � � � aipkq is reduced in Z�n2 {pHqn if and only if lpπpaip1q � � � aipkqqq � k.
Denoting

Lk � spantw � πpaip1q � � � aipkqq | aip1q � � � aipkq
is reduced as a word in Z�n2 {pHqnu ,

we have to show that αpLkq � LkbACH pnq. First note that αpLkq �
�
k1¤k Lk1b

ACH pnq. Let πpaip1qq � � � πpaipkqq denote a word that is reduced in Z�n2 {pHqn,
write w � πpaip1q � � � aipkqq and assume that αpwq R Lk bACH pnq. We have

αpwq �
¸

jp1q,...,jpkq
πpajp1q � � � ajpkqq b uip1qjp1q � � � uipkqjpkq ,

so there is some mutiindex pjp1q, . . . , jpkqq such that
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• ajp1q � � � ajpkq is not reduced in Z�n2 {pHqn and

• uip1qjp1q � � � uipkqjpkq � 0.

As seen above, the word aip1q � � � aipkq must arise as a permutation of letters
from ajp1q � � � ajpkq, because uip1qjp1q � � � uipkqjpkq � 0. Since ajp1q � � � ajpkq
is not reduced in Z�n2 {pHqn and aip1q � � � aipkq arises from ajp1q � � � ajpkq by
a permutation of letters, also aip1q � � � aipkq is not reduced in Z�n2 {pHqn.
This is a contradiction. We proved that α is an isometric action of
pACH pnq, punqtq. Summarising we showed that the maximal quantum subgroup
of pCpHr8s

n q, usimplq which acts faithfully and isometrically on C�maxpZ�n2 {pHqnq
is isomorphic to pACH pnq, punqtq. Invoking Corollary 6.5.6, we see that
pACH pnq, punqtq � pACH pnq, unq and this finishes the proof.

In view of the last theorem, it would be interesting to calculate the full quantum
isometry groups of C�maxpZ�n{pHqnq.
Example 6.6.7. One class of groups which appear as Z�n2 {pHqn for some
S0-invariant subgroup H ¤ E ¤ Z�82 are Coxeter groups. A Coxeter group G
is of the above form if and only if

G � Z�n2 {xpaiajqs | 1 ¤ i, j ¤ ny ,

for some s P N¥2. The easy quantum group associated with it is Hrss
n , since the

category of partitions of the latter is given by x[[[, hsy.

6.6.1 The triangluar relationship between quantum groups,
reflection groups and categories of partitions

Let us give a name to the groups that appear in the first part of this section.

Definition 6.6.8. Let H ¤ Z�82 be an S0-invariant subgroup. A symmetric
reflection group G is the quotient of Z�n2 by the intersection H X Z�n2 . The
images of the canonical generators of Z�n2 in G are called the generators of the
symmetric reflection group G.

We obtain a correspondence between simplifiable quantum groups and symmetric
reflection groups. By the work of Banica and Speicher [24], there is a
correspondence between easy quantum groups and categories of partitions.
Finally, the results of Section 6.3 show that there is a correspondence between
symmetric reflection groups and simplifiable categories of partitions. We
therefore obtain a triangular correspondence between simplifiable quantum
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groups, symmetric reflection groups and simplifiable categories of partitions
that we are going to recap.

simplifiable
categories of
partitions

�

%%KKKKKKKKK

�
//

simplifiable
easy quantum

groups
oo

�yyssssssss

symmetric
reflection
groups

99ssssssss

eeKKKKKKKK

From quantum groups to categories of partitions and back: By the
work of Banica and Speicher [24] there is a one-to-one correspondence between
easy quantum groups and categories of partitions. As described in Section
6.1.2, the category of partitions associated with an easy quantum group pA, uq
describes the intertwiner spaces between tensor powers of the fundamental
corepresentation u. By definition, an easy quantum groups is called a simplifiable
quantum group, if the category of partitions associated with it contains the
four block [[[, the pair positioner partition [{�[, but not the double singleton
Ò b Ò.
From categories of partitions to reflection groups and back: Theorem
6.3.10 shows that there is a one-to-one correspondence between categories
of partitions and S0-invariant subgroups of Z�82 . By definition, symmetric
reflection groups on infinitely many generators correspond precisely to the
S0-invariant subgroups of Z�82 .

From quantum groups to reflection groups and back: Let pA, uq, u P
MnpCqpAq be a compact matrix quantum group. The quotient of A by the
ideal generated by tuij | i � ju is a cocommutative compact matrix quantum
group. It is of the form pC�pGq, pδijgiqijq for a generating set g1, . . . , gn of
a discrete group G. Theorem 6.6.3 shows that if pCpHq, uq is a simplifiable
quantum group, then the associated discrete group G with generators g1, . . . , gn
is a symmetric reflection group. Vice versa, Theorem 6.6.6 associates with
a symmetric reflection group G on finitely many generators g1, . . . , gn the
maximal quantum subgroup of H � H

r8s
n that acts faithfully and isometrically

on C�maxpGq. The remark after Theorem 6.6.3 says that CpHq is a canonical
extension of C�maxpGq as a C�-algebra.

From finitely generated to infinitely generated symmetric reflection
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groups and back: Given a symmetric reflection group G on infinitely many
generators g1, g2, . . . all groups Gn � xg1, g2, . . . gny are symmetric reflection
groups also. They form an inductive system

� � � ãÑ Gn ãÑ Gn�1 ãÑ � � �

of symmetric reflection groups. We can obtain G as the inductive limit of this
system.

Theorems 6.6.3 and 6.6.6 show that the above correspondences are compatible
with each other. Put differently, the triangle between quantum groups, discrete
groups and categories of partitions commutes.



Chapter 7

Summary and open problems

In this chapter, we give a brief summary of the work presented in this thesis in
Section 7.1 and then in Section 7.2 sketch open problems further supporting
the common direction of our projects.

7.1 Summary of our results

This thesis collects different results on von Neumann algebras and quantum
groups focusing on classification results for natural subclasses of these and
calculation of categories of representations. The work in Chapter 3 gives a
complete classification of group measure space constructions associated with
Bernoulli actions and some of their quotients of free groups of finite rank
in terms of the rank of the free groups involved. Chapters 5 and 6 contain
classification results for von Neumann algebras and easy quantum groups in
terms of classical data. While in Chapter 5 partial classifiaction results for free
Bogoliubov crossed products in terms of an orthogonal representation of Z, from
which the crossed product was constructed, is obtain, in Chapter 6 the main
point is the identification of a completely new invariant, namely symmetric
reflection groups, parametrising simplifiable easy quantum groups. In the latter
chapter, we put the lattice structure of the set of all easy quantum groups in
the focus and show that it is not possible to describe it completely, by injecting
the lattice of varieties of groups. This point of view also allows us to make
non-trivial statements on the structure of easy quantum groups, demonstrating
the direct connection between classification and structural results.

199
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Categories of representations are investigated in Chapters 2 and 4. In Chapter
2, the fusion rules of certain free quantum groups were calculated. Such
calculations, together with other methods already known before, hopefully
allow us to find the fusion rules of certain subclasses of the simplifiable easy
quantum groups described before. In Chapter 4, the existence of II1 factors with
prescribed bimodule categories, for example arbitrary finite tensor C�-categories,
is shown. The tensor C�-category we can realise as a bimodule category can
also be the category of unitary finite dimensional corepresentations of a discrete
quantum group from a fairly big class. This connects our work on bimodule
categories of II1 factors with our work on quantum groups, as we will describe
more detailed in Section 7.2.2. Our results on bimodule categories allow us to
obtain calculations of other invariants for II1 factors, proving the usefulness of
this approach.

7.2 Open problems

We sketch several open problems deepening our research and relating the
different topics treated in this thesis.

7.2.1 Fusion rules for easy quantum groups

In view of older success when calculating fusion rules on a combinatorial basis
[7, 25] as in Chapter 2, it is realistic to expect that fusion rules of any easy
quantum group are at least in principle calculable. The results of Chapter 6,
however, show that the class of easy quantum groups is very rich, rendering a
uniform approach to all easy quantum groups quite impossible. It is therefore
reasonable to select interesting subclasses of easy quantum groups and try
to calculate their fusion rules. The higher hyperoctahedral and the higher
hyperoctahedral series introduced in [17] are a good candidates for such classes,
since they are very natural from a combinatorial point of view and correspond
under the bijection described in Chapter 6 at the same time to the variety of
abelian groups with fixed exponent and the variety of all groups with fixed
exponent, respectively. The associated reflection groups are Coxeter groups, so
that methods for determining the size of balls in their Cayley graph are available.
Since the size of such balls is related to dimensions of intertwiner spaces of the
corresponding easy quantum group, it is probable that the fusion rules of the
higher hyperoctahedral quantum groups can be calculated combining group
theoretical results and the known combinatorial methods.
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7.2.2 New examples of bimodule categories of II1 factors

As shown in Chapter 4, every faithful corepresentation of a discrete Kac algebra
in the hyperfinite II1 factor enables us to realise the category of its finite
dimensional unitary corepresentations as the bimodule category of a II1 factor.
In view of the problem described in Section 7.2.1, it is interesting to find a
faithful corepresentation of the discrete dual of Aopnq in the hyperfinite II1

factor. In fact, it reasonable to conjecture that {Aopnq is maximally almost
periodic in the sense of Sołtan [198], due to its similarity with free groups.
It would be useful to obtain a proof that is based on the combinatorics of
intertwiner spaces of Aopnq, so that also the following question can be answered:
are all discrete duals of easy quantum groups maximally almost periodic? A
positive answer to this question would yield many new examples of bimodule
categories combining the work in Chapters 4 and 6.

7.2.3 Calculation of bimodule categories of II1 factors with
non-trivial fundamental group

In Chapter 4 we could show that many compact tensor C�-categories arise as
the bimodule category of a II1 factor. However, all factors that appear there
have a trivial fundamental group. Skandalis asked whether it would be possible
to obtain examples with known bimodule category and non-trivial fundamental
group. As explained in Section 1.1.6, the group of invertible objects of the
bimodule category of a II1 factor M is related to its fundamental group by the
exact sequence

1 Ñ OutpMq Ñ GrppMq Ñ FpMq Ñ 1 .

In this light, it would be interesting to find for any countable subgroup S ¤ R¡0
and every finite tensor C�-category C a II1 factor M such that FpMq �
S and BimodpMq � S b C, where S is the category of finite dimensional
unitary representations of pS and b denotes the Deligne tensor product of tensor
categories [61].

7.2.4 Is every countable tensor C�-category the bimodule
category of a II1 factor?

A compact tensor C�-category is called countable, if it has a countable number
of isomorphism classes of irreducible objects. In view of our result in Chapter 4
that every finite tensor C�-category is the bimodule category of a II1 factor, it is
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natural to ask whether the same is true for countable tensor C�-categories. Note
also that by a result of Vaes every countable group is the outer automorphism
group of a II1 factor [215].

Recently, in [43], it was shown that every countable tensor C�-category can be
embedded into the category of bimodules over a free group factor. It seems
plausible, that every countable tensor C�-category can be even realised as the
category of bimodules of a depth 2 subfactor inclusion of a free group factor into
a factor of type II8. Now the methods Chapter 4 could possibly apply, if the
following theorem of Popa on the outer automorphism group of the hyperfinite
II1 factor, could be generalised to free group factors. In [117] it is shown that
for all countable subgroups G,H � OutpRq, there is an element α P OutpRq
such that G and pAdαqpHq are free. See [216] for the appropriate generalisation
to bimodule categories. This problem motivates questions about the outer
automorphism group of free group factors, one of which we state in 7.2.5.

7.2.5 Strong solidity of crossed products of integer actions on
free group factors

In Chapter 5, we extended the results of Houdayer-Shylakhtenko strong solidity
of free Bogoliubov crossed products of the integers. We showed that free
Bogoliubov crossed products of a direct sum of some mixing representation
with an at most one-dimensional representation is strongly solid, while free
Bogoliubov crossed products of actions with two-dimensional rigid subspaces
are not even solid. It would be interesting to explore, whether a crossed product
of a free group factor by an integer action is generically strongly solid.

There are classes of probability measure transformations in which a generic
(in the sense of descriptive set theory [127]) action is weakly mixing and rigid
[1]. If Z α

ñ X is such a transformation, then Z Ñ OpL2
RpXq a R � 1q is a

weakly mixing and rigid representation of Z and as such it gives rise to a free
Bogoliubov crossed product with property Γ, which hence cannot be solid.
On the other hand, it is known that a generic (in the sense of random walks)
automorphism of a finite rank free group is iwip (irreducible with irreducible
powers) [185, 197] and that mapping cones Fn � Z of iwip automorphisms of a
free group are hyperbolic [29, 28]. Combining this with the fact that group von
Neumann algebras of hyperbolic groups are strongly solid [46], we found a class
of automorphisms of free group factors, which generically give rise to strongly
solid crossed products.

As mentioned earlier in Section 7.2.4, specifically in the context of a possible
generalisation of the results in Chapter 4, it is interesting to investigate the
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outer automorphism group of free group factors from as many perspectives as
possible. The problem just described could be one aspect of such investigations.

7.2.6 Actions of duals of free orthogonal groups

The description of this problem is highly speculative. As explained in Section
1.2, actions of quantum groups provide a link between operator algebras and
quantum groups. One interesting problem in this context, is the search for
actions of quantum groups on abelian von Neumann algebras. Indeed, there
are no natural sources of such actions of quantum groups. However, in the
more specific situation of duals of free orthogonal quantum groups, due to their
universality properties, one can hope to find examples. Assume that there was a
strictly outer ergodic trace preserving action of yO�

n on some diffuse abelian von
Neumann algebra A. Then A � A�yO�

n is a maximally abelian, quasi-regular
subalgebra of a II1 factor. By a result of Popa [166, Lemma 3.5], A is a Cartan
subalgebra. So the construction of Feldman and Moore [89, 90] associates an
ergodic II1 equivalence relation with A � A�yO�

n .

Several question about this equivalence relation would arise, if one could
construct strictly outer ergodic trance preserving actions of yO�

n on abelian
von Neumann algebras. Can two equivalence relations arising this way from yO�

n

and yO�
m ever be isomorphic, if n � m? This question is of course inspired by

the fact that free ergodic pmp actions of free groups of different rank can never
be isomorphic. The von Neumann algebras L8pO�

n q of free orthogonal quantum
groups posses many properties of free group factors. They are for example
strongly solid [119] and posses the W�-completely contractive approximation
property [42, 91]. At the moment, it seems not possible to decide whether
L8pO�

n q are free group factors or not. However, in the previous setting, it would
be interesting to look for actions of yO�

n yielding an equivalence relation that is
stably isomorphic to an orbit equivalence relation of a free ergodic pmp action
of a free group. Such a finding could be interpreted as a measure equivalence
result between free groups and duals of free orthogonal quantum groups.
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