Exercises on Homology and Cohomology

Spring term 2018, Sheet 1

Hand in before 10 o'clock on 26th February 2018 Mailbox of Sven Raum in MA B2 475 Sven Raum Haoqing Wu

Exercise 1

In this exercise we investigate the independence of the Euler characteristic from concrete Δ -complex structures.

- (i) Let X be a topological space admitting a finite 2-dimensional Δ -complex structure. Show that the Euler characteristic does not depend on the choice of the particular Δ -complex structure.
- (ii) Define a notion of Euler characteristic for topological spaces with arbitrary finite Δ -complexes and show that it does not depend on the particular choice of Δ -complex structure.

Exercise 2 (will be corrected)

In this exercise we calculate the Euler characteristic of topological surfaces, which generalise the torus to objects with "several wholes":

We write Σ_g for the standard surface of genus $g \in \mathbb{N}$, as defined subsequently. The standard surface of genus 0 is the sphere. For $g \in \mathbb{N}_{\geq 1}$, the standard surface of genus g is the quotient of a regular 4g-polygon whose edges are identified according to the following rule: $a_1,b_1,a_1^{-1},b_1^{-1},a_2,b_2,a_2^{-1},b_2^{-1},\ldots,a_g,b_g,a_g^{-1},b_g^{-1}$. Here a_i designates an edge with label a_i oriented in the mathematically positive sense and a_i^{-1} designates an edge with label a_i oriented in the mathematically negative sense.

- (i) Find a finite 2-dimensional Δ -complex structure on each standard surface.
- (ii) Calculate the Euler characteristic $\chi(\Sigma_q)$ of the standard surface of genus g as a function of g.

Exercise 3 (will be corrected)

In this exercise we see the differences between the notions of injectivity/monomorphism and surjectivity/epimorphism by means of examples.

- (i) Show that in the category \mathbf{Ring} of rings, the inclusion $\mathbb{Z} \subset \mathbb{Q}$ defines an epimorphism.
- (ii) Show that in the category $\mathbf{Top}_{\mathrm{Haus}}$ of Hausdorff topological spaces, the inclusion $\mathbb{Q} \subset \mathbb{R}$ defines an epimorphism.
- (iii) Show that in the category \mathbf{Div} of divisible groups the quotient map $\mathbb{Q} \to \mathbb{Q}/\mathbb{Z}$ defines a monomorphism. (A divisible group is an abelian group A such that for every $a \in A$ and every $n \in \mathbb{N}_{\geq 1}$ there is some $b \in A$ satisfying nb = a.)

Exercise 4

Let k be a field and denote by $\operatorname{Free}: \operatorname{\mathbf{Set}} \to k\text{-}\mathbf{Vec}$ the functor associating with a set $X \in \operatorname{\mathbf{Set}}$ the free vector space k^X . Show that Free is essentially surjective, that is for every $V \in k\text{-}\mathbf{Vec}$ there is $X \in \operatorname{\mathbf{Set}}$ such that $V \cong \operatorname{Free}(X)$.