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Exercise 1 (easy)
LetG be a group andR a ring. Show that

HomRings(ZG,R) ≅ HomGrps(G,R×) ,

whereR× denotes the group of units ofR.

Exercise 2 (medium)
Let F be a freeR-module and let

0→M1 →M2 →M3 → 0

be a short exact sequence ofR-modules. Show that

0→ Hom
R
(F,M1) → Hom

R
(F,M2) → Hom

R
(F,M3) → 0

is a short exact sequence of abelian groups.

Exercise 3 (difficult)
In this exercise we find a natural CW-complex on which the free group F2 acts freely and thus calculate
its cohomology. This is the so-called Cayley tree of F2. Let S = {a, b,} be a set of generators of F2. We
consider the directed graph T whose vertex set is V(T ) = F2 and whose edge set is E(T ) = {(g, gs) ∣ g ∈
V(T ), s ∈ S}.

(i) Show that there is a well-defined CW-complex with 0-cells equals toV(T ) and 1-cells equal toE(T ),
with gluing maps ϕ(g,gs) ∶ S0 = {−1,1} → V(T ) given by ϕ(g,gs)(−1) = g and ϕ(g,gs)(1) = gs. This
CW-complex is called the geometric realisation of T and it is denoted ∣T ∣.

(ii) Show that ∣T ∣ is contractible.

(iii) Show that the actions F2 ↷ V(T ),E(T ) by left multiplication turn ∣T ∣ into a contractible free F2-
CW-complex.

(iv) Show that ∣T ∣/F2 is a bouquet of two circles S1 ∨ S1.

(v) Calculate the cohomology of S1 ∨ S1. This is the cohomology of F2.


