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Exercise 1 (easy)
In this exercise we characterise which groups have a projective resolution of length 0, that is P∗ → Z such
that Pn = 0 for all n ≥ 1. More precisely, let G be a group and ε ∶ ZG → Z the augmentation map, which
satisfies ε(ug) = 1 for all g ∈ G.

(i) Show that ε splits (i.e. there is a ZG-modular map ϕ ∶ Z→ ZG such that ε ○ϕ = idZ) if and only ifG
is trivial.

(ii) Characterise those groupsG for which Z is a projective ZG-module.

(iii) Characterise those groupsG for which there is a projective resolution of length 0 of Z.

Exercise 2 (medium)
Let G be a group and F∗ → Z be the bar resolution of the trivial module Z over ZG and recall that a ZG-
basis of Fn is given by the family [g1∣⋯∣gn] for g1, . . . , gn ∈ G. Let Fn be the quotient by of Fn by the free
ZG-submodule whose basis is {[g1∣⋯∣gn] ∣ ∃i ∈ {1, . . . , n} ∶ gi = e}.

(i) Show that the boundary maps of F∗ induce well-defined boundary maps for F∗.

(ii) Show that F∗ → Z is a free resolution over ZG. It is called the normalised bar resolution of Z over
ZG.

Exercise 3 (medium)
Show that the following statements are equivalent for anR-module A.

(i) A is a projectiveR-module.

(ii) HomR(A,−) is an exact functor, that is for every short exact sequence ofR-modules

0→M1 →M2 →M3 → 0

also the sequence of abelian groups

0→ HomR(A,M1) → HomR(A,M2) → HomR(A,M3) → 0

is exact.


