Exercises on Homology and Cohomology

Spring term 2018, Sheet 12

Hand in before 10 o'clock on 28th May 2018 Mailbox of Sven Raum in MA B2 475 Sven Raum Haoqing Wu

Exercise 1 (easy)

In this exercise we characterise which groups have a projective resolution of length 0, that is $P_* \to \mathbb{Z}$ such that $P_n = 0$ for all $n \ge 1$. More precisely, let G be a group and $\epsilon : \mathbb{Z}G \to \mathbb{Z}$ the augmentation map, which satisfies $\epsilon(u_q) = 1$ for all $g \in G$.

- (i) Show that ϵ splits (i.e. there is a $\mathbb{Z}G$ -modular map $\varphi: \mathbb{Z} \to \mathbb{Z}G$ such that $\epsilon \circ \varphi = \mathrm{id}_{\mathbb{Z}}$) if and only if G is trivial.
- (ii) Characterise those groups G for which \mathbb{Z} is a projective $\mathbb{Z}G$ -module.
- (iii) Characterise those groups G for which there is a projective resolution of length 0 of \mathbb{Z} .

Exercise 2 (medium)

Let G be a group and $F_* \to \mathbb{Z}$ be the bar resolution of the trivial module \mathbb{Z} over $\mathbb{Z}G$ and recall that a $\mathbb{Z}G$ -basis of F_n is given by the family $[g_1|\cdots|g_n]$ for $g_1,\ldots,g_n\in G$. Let $\overline{F_n}$ be the quotient by of F_n by the free $\mathbb{Z}G$ -submodule whose basis is $\{[g_1|\cdots|g_n]\mid\exists i\in\{1,\ldots,n\}:g_i=e\}$.

- (i) Show that the boundary maps of F_* induce well-defined boundary maps for $\overline{F_*}$.
- (ii) Show that $\overline{F_*} \to \mathbb{Z}$ is a free resolution over $\mathbb{Z}G$. It is called the normalised bar resolution of \mathbb{Z} over $\mathbb{Z}G$.

Exercise 3 (medium)

Show that the following statements are equivalent for an R-module A.

- (i) A is a projective R-module.
- (ii) $\operatorname{Hom}_R(A, -)$ is an exact functor, that is for every short exact sequence of R-modules

$$0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0$$

also the sequence of abelian groups

$$0 \to \operatorname{Hom}_R(A, M_1) \to \operatorname{Hom}_R(A, M_2) \to \operatorname{Hom}_R(A, M_3) \to 0$$

is exact.