Exercises on Homology and Cohomology

Spring term 2018, Sheet 3

Hand in before 10 o'clock on 12th March 2018 Mailbox of Sven Raum in MA B2 475 Sven Raum Haoqing Wu

Exercise 1

Let X be a finite Δ -complex, that is a Δ -complex with only finitely many simplices. Show that

$$\chi(X) = \sum_{n=0}^{\infty} (-1)^n \operatorname{rank} \mathbf{H}_n^{\Delta}(X).$$

Exercise 2 (to be corrected)

The dimension of a Δ -complex is the largest dimension of a simplex it contains. Let X and Y be a connected finite Δ -complexes of the same finite dimension n. We defined the connected sum X#Y combinatorially by first choosing injective n-simplices $\sigma_X:\Delta^n\hookrightarrow X$ and $\sigma_Y:\Delta^n\hookrightarrow Y$, removing their interior and finally gluing the remaining parts along the simplices' boundaries. In formulas:

$$X \# Y = \left((X \setminus (\operatorname{im} \sigma_X)^{\circ}) \sqcup (Y \setminus (\operatorname{im} \sigma_Y)^{\circ}) \right) / \sigma_X(t) = \sigma_Y(t) \text{ for all } t \in \partial \Delta^n.$$

- (i) Calculate the Euler characteristic of X # Y in terms of the Euler characteristic of X and Y.
- (ii) Use the previous formula to calculate the Euler characteristic of the standard surface of genus g, $g \ge 1$, which satisfies

$$\Sigma_g = \mathbb{T}^2 \# \cdots \# \mathbb{T}^2$$
 (g terms)

Exercise 3

The standard surface Σ_g of genus g is obtained as a quotient of the regular 4g-gon. Recall the Δ -complex structure on Σ_g obtained by fixing some vertex of the 4g-gon and connecting it with all others.

- (i) Based on the previous Δ -complex structure, calculate the simplicial homology $H_n(\Sigma_g)$ of the standard surface of genus g.
- (ii) Describe a generator of $H_2(\Sigma_g)$.
- (iii) Check your calculations by matching $\chi(\Sigma_q) = \sum_{n=0}^{\infty} (-1)^n \operatorname{rank} H_n(\Sigma_q)$.

Exercise 4 (to be corrected)

Let \mathcal{C} be a category and $A, B \in \operatorname{ob} \mathcal{C}$. An object $C \in \operatorname{ob} \mathcal{C}$ is called the product of A, B if there are morphisms $p_A : C \to A$, $p_B : C \to B$ such that for any pair of morphisms $f_A : D \to A$ and $f_B : D \to B$ there is a unique morphism $f : D \to C$ such that the following diagram commutes.

We write $A \prod B$ for the product of A and B.

(i) Show that $A \prod B$, if it exists, is unique up to a unique isomorphism in the following sense: whenever C a product of A and B then there is a unique isomorphism $A \prod B \to C$ that makes the following diagram commute.

$$\begin{array}{c|c} A \stackrel{p_B}{\longleftarrow} A \prod_{|B} B \xrightarrow{p_A} B \\ \downarrow_{\mathrm{id}_A} & \stackrel{|\cong}{\downarrow} \cong & \downarrow_{\mathrm{id}_B} \\ A & \longleftarrow C & \longrightarrow B \end{array}$$

- (ii) Show that products exist in the category **Grp** of groups and agree with the usual notion of product groups.
- (iii) The definition of a coproduct is dual to the definition of a product, in the sense that all arrows in the definition have to be reversed. Define the coproduct of two objects A, B in a category C.
- (iv) Does the category \mathbf{Grp} have coproducts? Prove their existence or provide an example of two groups G, H, which do not have a coproduct.