Exercises on Homology and Cohomology

Spring term 2018, Sheet 7

Hand in before 10 o'clock on 16th April 2018 Mailbox of Sven Raum in MA B2 475 Sven Raum Haoqing Wu

Exercise 1 (easy)

In this exercise we calculate the homology of spheres of positive dimension

$$H_k(S^n) = \begin{cases} \mathbb{Z} & \text{if } k \in \{0, n\} \\ 0 & \text{otherwise.} \end{cases}$$

- (i) Show that there are open contractible sets $U, V \subset S^n$ such that
 - $S^n = U \cup V$, and
 - $U \cap V \sim_h S^{n-1}$ are homotopy equivalent.
- (ii) Use the Meyer-Vietoris exact sequence of Exercise 2 to inductively calculate the homology of S^n .

Exercise 2 (medium)

In this exercise we provide an alternative and frequently useful way to apply excision in homology.

(i) (Algebraic Meyer-Vietoris sequence) Consider a commutative diagram of R-moudles whose rows are exact such that the maps $(\varphi_n)_n$ are isomorphisms:

$$\dots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}^C} C_n'' \xrightarrow{i_n} C_n' \xrightarrow{p_n} C_n \xrightarrow{\partial_n^C} C_{n-1}'' \longrightarrow \dots$$

$$\downarrow^{\varphi_{n+1}} \qquad \downarrow^{\varphi_n'} \qquad \downarrow^{\varphi_n'} \qquad \downarrow^{\varphi_n} \qquad \downarrow^{\varphi_n'} \qquad \downarrow^{\varphi_{n-1}'}$$

$$\dots \longrightarrow D_{n+1} \xrightarrow{\partial_{n+1}^D} D_n'' \xrightarrow{j_n} D_n' \xrightarrow{q_n} D_n \xrightarrow{\partial_n^D} D_{n-1}'' \longrightarrow \dots$$

Show that there is an exact sequence

$$\dots \longrightarrow C_n'' \xrightarrow{(i_n, \varphi_n'')} C_n' \oplus D_n'' \xrightarrow{\varphi_n - j_n} D_n' \xrightarrow{\delta_n} C_{n-1}'' \longrightarrow \dots$$

where $\delta_n = \partial_n \circ \varphi_n^{-1} \circ q_n : D'_n \to C''_{n-1}$.

(ii) (Topological Meyer-Vietoris sequence) Let $(H_n)_{n\in\mathbb{N}}$ be a homology theory and let $X=U^\circ\cup V^\circ$ be a cover a topological space X by the interior of two subsets $U,V\subset X$. Use excision to apply the algebraic Meyer-Vietoris sequence to the diagram of long exact sequences induced by the inclusion $(U,U\cap V)\hookrightarrow (X,V)$

$$... \longrightarrow \operatorname{H}_{n+1}(U, U \cap V) \longrightarrow \operatorname{H}_{n}(U \cap V) \longrightarrow \operatorname{H}_{n}(U) \longrightarrow \operatorname{H}_{n}(U, U \cap V) \longrightarrow ...$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad$$

to obtain an exact sequence

$$\ldots \longrightarrow \operatorname{H}_n(U \cap V) \longrightarrow \operatorname{H}_n(U) \oplus \operatorname{H}_n(V) \longrightarrow \operatorname{H}_n(X) \longrightarrow \operatorname{H}_{n-1}(U \cap V) \longrightarrow \ldots$$

Exercise 3 (difficult)

In this exercise we provide a way to calculate relative homology. We say that a pair (X,A) has the homotopy extension property (hep), if whenever $\varphi_t:A\to Z$, $t\in[0,1]$ is a homotopy of continuous maps and $\psi_0:X\to Z$ is an extension of φ_0 , then there is some homotopy of continuous maps $\psi_t:X\to Z$ extending $(\varphi_t)_{t\in[0,1]}$. We will see examples of pairs with the homotopy extension property later.

Let (X, A) be a pair of topological spaces with the hep. Show that

$$H_*(X,A) \cong H_*(X/A,\{A\}) \cong \tilde{H}_*(X/A)$$

induced by the quotient map $(X,A) \to (X/A,\{A\})$ and the identification $\tilde{H}_*(X) \cong H_*(X,\{pt\})$.