Exercises on Homology and Cohomology

Spring term 2018, Sheet 9

Hand in before 10 o'clock on 30th April 2018 Mailbox of Sven Raum in MA B2 475 Sven Raum Haoqing Wu

Exercise 1 (easy)

In this exercise we illustrate that the ring structure in cohomology can distinguish some spaces, where usual (co)homology can not.

- (i) A ring S is graded, if there it is a direct sum of abelian groups $S = \bigoplus_{k \in \mathbb{N}} S^k$ such that multiplication restricts to maps $S^k \times S^l \to S^{k+l}$. Let (X,A) be a pair of spaces and R a ring. Show that the cup product defines a graded ring structure on $H^*(X,A;R) = \bigoplus_{k \in \mathbb{N}} H^k(X,A;R)$
- (ii) Calculate the cohomology ring $H^*(S^n; R) \cong R[x]/x^2$, where x has degree n.
- (iii) We admit that $H^*(\mathbb{C}P^n;\mathbb{Z})$ as ring is isomorphic with $\mathbb{Z}[x]/x^{n+1}$, where $\mathbb{Z}[x]$ denotes the polynomial ring in one variable. Show that that $\mathbb{C}P^2$ is not homotopy equivalent with $S^2 \vee S^4$, using the result of Exercise 2.

Exercise 2 (medium)

This exercise starts from the Eilenberg-Steenrod axioms, and in particular additivity: singular cohomology with arbitrary coefficients satisfies additivity in the sense that for any family of space $(X_i)_{i \in I}$ the natural inclusions $\iota_i : X_i \to \coprod X_i$ induce an isomorphism in cohomology

$$H^*(\coprod_{i\in I} X_i; M) \xrightarrow{\prod \iota_i} \prod_{i\in I} H^*(X_i; M).$$

Remark that on the right side, we see a product of groups instead of a direct sum, which makes a difference only for infinite index sets I.

Next recall the wedge sum of two pointed spaces (X,x) and (Y,y) defined as $X \vee Y = X \coprod Y/x = y$. This construction is interpreted as taking the disjoint union of X and Y and identifying their base point. More generally, for a family $(X_i,x_i)_{i\in I}$ of space the wedge sum is defined as

$$\bigvee_{i \in I} X_i = \coprod_{i \in I} X_i / \coprod_{i \in I} \{x_i\}.$$

(i) Show that for reduced cohomology of pointed spaces, defined as $\ddot{\mathrm{H}}^*(X;M) = \mathrm{H}^*(X,\{x\};M)$ the following additivity formula holds if all (X_i,x_i) are pointed CW-complexes

$$\tilde{\mathrm{H}}^*(\bigvee_{i\in I}X_i;M)\stackrel{\prod\iota_i}{\longrightarrow}\prod_{i\in I}\tilde{\mathrm{H}}^*(X_i;M).$$

The assumption that (X_i, x_i) is a pointed CW-complex, implies that the quotient map $\coprod_{i \in I} X_i \to \coprod_{i \in I} X_i / \coprod_{i \in I} x_i$ induces an isomorphism

$$\mathrm{H}^*(\coprod_{i\in I}X_i,\coprod x_i;M)\to \tilde{\mathrm{H}}^*(\coprod_{i\in I}X_i;M)$$

You may use this fact without providing a proof.

- (ii) Assume that R is a ring and show that the isomorphism provided by additivity in reduced cohomology $\tilde{\mathrm{H}}^*(X;R)$ and non-reduced cohomology $\mathrm{H}^*(X;R)$ is a graded ring isomorphism.
- (iii) Calculate the ring $\tilde{\mathrm{H}}^*(\mathrm{S}^2 \vee \mathrm{S}^4),$ using the result of Exercise 1 (ii).

Exercise 3 (difficult)

Assume the following statement: chain map between chain complexes $\varphi: C_* \to D_*$ of free abelian groups that induces an isomorphism in homology also induces an isomorphism in cohomology for arbitrary coefficients through the map $\varphi^*: \operatorname{Hom}(D_*, M) \to \operatorname{Hom}(C_*, M)$.

- (i) Formulate Eilenberg-Steenrod axioms for cohomology.
- (ii) Show that singular cohomology $H^*(-,-;M)$ is a cohomology theory with coefficient group M.