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Exercise 1.In this exercise we see that the correspondence between connected Lie subgroups and Lie subalgebras doesnot suffice to detect closed subgroups.
(i) Show that the quotient map map R2

→ R2
/Z2

≅ T2 induces an isomorphism of Lie algberas
(ii) Determine Lie(T2

) = Lie(R2
).

(iii) Characterise those Lie subalgebras of Lie(T2
) that correspond to closed subgroups.

(iv) Characterise those Lie subalgebras of Lie(R2
) that correspond to closed subgroups.

Exercise 2.LetG be a connected Lie group. Show that Aut(G) is a Lie group.
Exercise 3.Let (Hi)i∈I be a family of closed Lie subgroups of a Lie group G whose Lie algebras are denoted (hi)i∈I .Without using the characterisation of closed subgroups in Lie groups, show that H = ⋂i∈I is a closed Liesubgroup ofG whose Lie algebra is ⋂i∈I hi.
Exercise 4.Let G be a connected Lie group. Show that for every closed subgroup H ≤ G there is a differentiablemanifoldM , some point p ∈ M and a continuous action G ↷M by diffeomorphisms such thatH = Gp =

{g ∈ G ∣ gp = p}.
Exercise 5.Recall the notion of a differential operator on a differential manifoldM : this is a linear mapD ∶ C∞

(M) →
C∞
(M) such that
• for all f ∈ C∞

(M), we have suppDf ⊂ supp f .
• for every point p ∈ M there are local coordinates (U,ϕ) of M at p such that ϕ−1

∗
○ D ○ ϕ∗ ∶

C∞
(ϕ(U)) → C∞

(ϕ(U)) is a differential operator on the open subset ϕ(U) ⊂ Rn.
Let G be a Lie group with Lie algebra g = Lie(G). Show that the universal enveloping algebra U(g) actsthroughG-equivariant differential operators onG and that everyG-equivariant differential operator onGarises this way.


